GeneMarkES-Sapelo2: Difference between revisions

From Research Computing Center Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Category:Sapelo2old]][[Category:Software]][[Category:Bioinformatics]]
[[Category:Sapelo2]][[Category:Software]][[Category:Bioinformatics]]
=== Category ===
=== Category ===


Line 9: Line 9:


=== Version ===
=== Version ===
4.57
4.71
   
   
=== Author / Distributor ===
=== Author / Distributor ===
Line 24: Line 24:
In order to use geneMarker you will need to download a key file and put it into your home directory. Please follow instructions as given below:
In order to use geneMarker you will need to download a key file and put it into your home directory. Please follow instructions as given below:


1) Go to http://exon.gatech.edu/GeneMark/license_download.cgi, fill the requested fields are read the license text. Note: you can select any tool and platform actually, e.g. GeneMark-ES/ET v.4.33 and LINUX64.
1) Go to http://topaz.gatech.edu/GeneMark/license_download.cgi, fill the requested fields are read the license text. Note: you can select any tool and platform actually, e.g. GeneMark-ES/ET/EP+ ver 4.72_lic and LINUX64 kernel 3.10-5.


2) After pressing "I agree ..." button you will be redirected to a download page. You will need to download the 64bit key file only. The key file will be downloaded to your local drive. Then please transfer it to the cluster using the transfer node. Please refer to [[Transferring Files]].
2) After pressing "I agree ..." button you will be redirected to a download page. You will need to download the 64bit key file only. The key file gm_key_64.gz will be downloaded to your local drive. Then please transfer it to the cluster using a transfer node. Please refer to [[Transferring Files]].


3) The key file downloaded is in gzip format, on the cluster please unpack it (with gunzip) and move it to ~/.gm_key (the name should be exactly like this, with a dot in the beginning), for example:
3) The key file downloaded is in gzip format, on the cluster please unpack it (with gunzip) and move it to ~/.gm_key (the name should be exactly like this, with a dot in the beginning), for example:


<div class="gscript2">
<pre  class="gcommand">
gunzip gm_key_64.gz
gunzip gm_key_64.gz
mv gm_key_64 ~/.gm_key
</pre>


mv  gm_key_64  ~/.gm_key
where ~ is your home directory. i.e /home/MyID. Once the .gm_key file has been placed in your home dir you should be able to run GeneMarker.
</div>


where ~ is your home directory. i.e /home/ugamyid . Once the .gm_key file has been placed in your home dir you should be able to run GeneMarker.


'''Version 4.71'''


'''Version 4.57'''
Version 4.71, installed at


Version 4.57 is installed at /apps/eb/GeneMark-ET/4.57-GCCcore-8.3.0
* /apps/eb/GeneMark-ET/4.71-GCCcore-11.3.0/
* /apps/eb/GeneMark-ET/4.71-GCCcore-11.2.0/


It can be loaded with:
To use it, please load the module with:
<div class="gscript2">
module load GeneMark-ET/4.71-GCCcore-11.3.0
</div>


or 
<div class="gscript2">
<div class="gscript2">
module load GeneMark-ET/4.57-GCCcore-8.3.0
module load GeneMark-ET/4.71-GCCcore-11.2.0
</div>
</div>


Line 65: Line 71:
cd $SLURM_SUBMIT_DIR<br>
cd $SLURM_SUBMIT_DIR<br>


module load GeneMark-ET/4.57-GCCcore-8.3.0
module load GeneMark-ET/4.71-GCCcore-11.3.0


gmes_petap.pl [options]   
gmes_petap.pl [options]   
Line 79: Line 85:
=== Documentation ===
=== Documentation ===
   
   
<pre class="gcommand">
<pre class="gcommand">
module load GeneMark-ET/4.57-GCCcore-8.3.0
module load GeneMark-ET/4.71-GCCcore-11.3.0
gmes_petap.pl  
gmes_petap.pl  
# -------------------
# -------------------
# -------------------
Usage:  /apps/eb/GeneMark-ET/4.71-GCCcore-11.3.0/gmes_petap.pl  [options]  --sequence [filename]
Usage:  /apps/eb/GeneMark-ET/4.57-GCCcore-8.3.0/gmes_petap.pl  [options]  --sequence [filename]


GeneMark-ES Suite version 4.57_lic
GeneMark-ES Suite version 4.71_lic
Suite includes GeneMark.hmm, GeneMark-ES, GeneMark-ET and GeneMark-EP algorithms.
Suite includes GeneMark.hmm, GeneMark-ES, GeneMark-ET and GeneMark-EP algorithms.


Input sequence/s should be in FASTA format.
Input sequence/s should be in FASTA format.


Select one of the gene prediction algorithm
Select one of the gene prediction algorithms:
 
  To run GeneMark-ES self-training algorithm
    --ES


To run GeneMark-ES self-training algorithm
  To run GeneMark-ET with hints from transcriptome splice alignments
  --ES
    --ET          [filename]; file with intron coordinates from RNA-Seq read splice alignment in GFF format
    --et_score    [number]; default 10; minimum score of intron in initiation of the ET algorithm


To run GeneMark-ET with hints from transcriptome splice alignments
  To run GeneMark-EP with hints from protein splice alignments
  --ET           [filename]; file with intron coordinates from RNA-Seq read splice alignment in GFF format
    --EP            
  --et_score     [number]; default 10; minimum score of intron in initiation of the ET algorithm
    --dbep        [filename]; file with protein database in FASTA format
    --ep_score     [number,number]; default 4,0.25; minimum score of intron in initiation of the EP algorithm
    or
    --EP          [filename]; file with intron coordinates from protein splice alignment in GFF format


To run GeneMark-EP with hints from protein splice alignments
  To run GeneMark.hmm predictions using previously derived model
  --EP         
     --predict_with [filename]; file with species specific gene prediction parameters
  --dbep        [filename]; file with protein database in FASTA format
  --ep_score     [number,number]; default 4,0.25; minimum score of intron in initiation of the EP algorithm
or
  --EP          [filename]; file with intron coordinates from protein splice alignment in GFF format


To run GeneMark.hmm predictions using previously derived model
  To run ES, ET or EP with branch point model. This option is most useful for fungal genomes
  --predict_with [filename]; file with species specific gene prediction parameters
    --fungus


To run ES, ET or EP with branch point model. This option is most useful for fungal genomes
  To run hmm, ES, ET or EP in PLUS mode (prediction with hints)
  --fungus
    --evidence    [filename]; file with hints in GFF format


To run hmm, ES, ET or EP in PLUS mode (prediction with hints)
  To run algorithms with alternative genetic codes
   --evidence    [filename]; file with hints in GFF format
    --gcode      [number]; default 1; supported 1 and 6/26
 
Output formatting options:
   --format      [label]; default GTF; output gene prediction in GTF of GFF3 format
  --work_dir    [folder name]; default current working directory .;


Masking option
Masking option
   --soft_mask    [number] or [auto]; default auto; to indicate that lowercase letters stand for repeats;
   --soft_mask    [number] or [auto]; default auto; to indicate that lowercase letters stand for repeats;
                 masks only lowercase repeats longer than specified length
                 algorithm hard masks only lowercase repeats longer than specified length
                 In 'auto' mode length is adjusted based on the size of the input genome
                 In 'auto' mode hard masking threshold is selected by algorithm based on the size of the input genome
  --mask_penalty [number] or [auto]; default 0.03;


Run options
Run options
Line 128: Line 142:
Optional sequence pre-processing parameters
Optional sequence pre-processing parameters
   --max_contig  [number]; default 5000000; will split input genomic sequence into contigs shorter then max_contig
   --max_contig  [number]; default 5000000; will split input genomic sequence into contigs shorter then max_contig
   --min_contig  [number]; default 50000; will ignore contigs shorter then min_contig in training  
   --min_contig  [number]; default 50000 (10000 fungi);  
                will ignore contigs shorter than min_contig in training  
   --max_gap      [number]; default 5000; will split sequence at gaps longer than max_gap
   --max_gap      [number]; default 5000; will split sequence at gaps longer than max_gap
                 Letters 'n' and 'N' are interpreted as standing within gaps  
                 Letters 'n' and 'N' are interpreted as standing within gaps  
Line 134: Line 149:
                 Letters 'x' and 'X' are interpreted as results of hard masking of repeats
                 Letters 'x' and 'X' are interpreted as results of hard masking of repeats


Optinal algorithm parameters
Optional parameters
   --max_intron            [number]; default 10000 (3000 fungi); maximum length of intron
   --max_intron            [number]; default 10000 (3000 fungi); maximum length of intron
   --max_intergenic        [number]; default 50000; maximum length of intergenic regions
   --max_intergenic        [number]; default 50000 (10000 fungi); maximum length of intergenic regions
   --min_contig_in_predict [number]; default 500; minimum allowed length of contig in prediction step
   --min_contig_in_predict [number]; default 500; minimum allowed length of contig in prediction step
   --min_gene_in_predict  [number]; default 300 (120 fungi); minimum allowed gene length in prediction step
   --min_gene_in_predict  [number]; default 300 (120 fungi); minimum allowed gene length in prediction step
   --gc_donor              [value];  default 0.001; transition probability to GC donor in the range 0..1; 'auto' mode detects probability from training; 'off' switches GC donor model OFF
   --gc_donor              [value];  default 0.001; transition probability to GC donor in the range 0..1;  
                          'off' switches GC donor model OFF
  --gc3          [number]; GC3 cutoff in training for grasses


Developer options
Developer options
  --gc3          [number]; GC3 cutoff in training for grasses
   --training    to run only training step of algorithm; applicable to ES, ET or EP
   --training    to run only training step of algorithms; applicable to ES, ET or EP
   --prediction  to run only prediction step of algorithms using species parameters from previously executed training; applicable to ES, ET or EP
   --prediction  to run only prediction step of algorithms using species parameters from previously executed training; applicable to ES, ET or EP
   --usr_cfg      [filename]; use custom configuration from this file
   --usr_cfg      [filename]; use custom configuration from this file
   --ini_mod      [filename]; use this file with parameters for algorithm initiation
   --ini_mod      [filename]; use this file with parameters for algorithm initiation
  --test_set    [filename]; to evaluate prediction accuracy on the given test set
   --key_bin
   --key_bin
   --debug
   --debug
# -------------------
# -------------------
</pre>
</pre>
[[#top|Back to Top]]
[[#top|Back to Top]]

Latest revision as of 11:38, 4 June 2024

Category

Bioinformatics

Program On

Sapelo2

Version

4.71

Author / Distributor

GeneMarkES

Description

"Gene Prediction in Eukaryotes. Novel genomes can be analyzed by the program GeneMark-ES utilizing unsupervised training." More details are at GeneMarkES

Running Program

Also refer to Running Jobs on Sapelo2

In order to use geneMarker you will need to download a key file and put it into your home directory. Please follow instructions as given below:

1) Go to http://topaz.gatech.edu/GeneMark/license_download.cgi, fill the requested fields are read the license text. Note: you can select any tool and platform actually, e.g. GeneMark-ES/ET/EP+ ver 4.72_lic and LINUX64 kernel 3.10-5.

2) After pressing "I agree ..." button you will be redirected to a download page. You will need to download the 64bit key file only. The key file gm_key_64.gz will be downloaded to your local drive. Then please transfer it to the cluster using a transfer node. Please refer to Transferring Files.

3) The key file downloaded is in gzip format, on the cluster please unpack it (with gunzip) and move it to ~/.gm_key (the name should be exactly like this, with a dot in the beginning), for example:

gunzip gm_key_64.gz
mv gm_key_64 ~/.gm_key

where ~ is your home directory. i.e /home/MyID. Once the .gm_key file has been placed in your home dir you should be able to run GeneMarker.


Version 4.71

Version 4.71, installed at

  • /apps/eb/GeneMark-ET/4.71-GCCcore-11.3.0/
  • /apps/eb/GeneMark-ET/4.71-GCCcore-11.2.0/

To use it, please load the module with:

module load GeneMark-ET/4.71-GCCcore-11.3.0

or

module load GeneMark-ET/4.71-GCCcore-11.2.0

Here is an example of a shell script sub.sh to run it at the batch queue:

#!/bin/bash
#SBATCH --job-name=geneMarkJob
#SBATCH --partition=batch
#SBATCH --mail-type=ALL
#SBATCH --mail-user=username@uga.edu
#SBATCH --ntasks=1
#SBATCH --mem10gb
#SBATCH --time=08:00:00
#SBATCH --output=log.%j.out
#SBATCH --error=log.%j.err

cd $SLURM_SUBMIT_DIR

module load GeneMark-ET/4.71-GCCcore-11.3.0

gmes_petap.pl [options]

In the real submission script, at least all the above underlined values need to be reviewed or to be replaced by the proper values.

Here is an example of job submission command:

sbatch ./sub.sh 

Documentation

module load GeneMark-ET/4.71-GCCcore-11.3.0
gmes_petap.pl 

# -------------------
Usage:  /apps/eb/GeneMark-ET/4.71-GCCcore-11.3.0/gmes_petap.pl  [options]  --sequence [filename]

GeneMark-ES Suite version 4.71_lic
Suite includes GeneMark.hmm, GeneMark-ES, GeneMark-ET and GeneMark-EP algorithms.

Input sequence/s should be in FASTA format.

Select one of the gene prediction algorithms:

  To run GeneMark-ES self-training algorithm
    --ES

  To run GeneMark-ET with hints from transcriptome splice alignments
    --ET           [filename]; file with intron coordinates from RNA-Seq read splice alignment in GFF format
    --et_score     [number]; default 10; minimum score of intron in initiation of the ET algorithm

  To run GeneMark-EP with hints from protein splice alignments
    --EP           
    --dbep         [filename]; file with protein database in FASTA format
    --ep_score     [number,number]; default 4,0.25; minimum score of intron in initiation of the EP algorithm
    or
    --EP           [filename]; file with intron coordinates from protein splice alignment in GFF format

  To run GeneMark.hmm predictions using previously derived model
    --predict_with [filename]; file with species specific gene prediction parameters

  To run ES, ET or EP with branch point model. This option is most useful for fungal genomes
    --fungus

  To run hmm, ES, ET or EP in PLUS mode (prediction with hints)
    --evidence     [filename]; file with hints in GFF format

  To run algorithms with alternative genetic codes
    --gcode      [number]; default 1; supported 1 and 6/26

Output formatting options:
  --format       [label]; default GTF; output gene prediction in GTF of GFF3 format
  --work_dir     [folder name]; default current working directory .;

Masking option
  --soft_mask    [number] or [auto]; default auto; to indicate that lowercase letters stand for repeats;
                 algorithm hard masks only lowercase repeats longer than specified length
                 In 'auto' mode hard masking threshold is selected by algorithm based on the size of the input genome
  --mask_penalty [number] or [auto]; default 0.03;

Run options
  --cores        [number]; default 1; to run program with multiple threads
  --pbs          to run on cluster with PBS support
  --v            verbose

Optional sequence pre-processing parameters
  --max_contig   [number]; default 5000000; will split input genomic sequence into contigs shorter then max_contig
  --min_contig   [number]; default 50000 (10000 fungi); 
                 will ignore contigs shorter than min_contig in training 
  --max_gap      [number]; default 5000; will split sequence at gaps longer than max_gap
                 Letters 'n' and 'N' are interpreted as standing within gaps 
  --max_mask     [number]; default 5000; will split sequence at repeats longer then max_mask
                 Letters 'x' and 'X' are interpreted as results of hard masking of repeats

Optional parameters
  --max_intron            [number]; default 10000 (3000 fungi); maximum length of intron
  --max_intergenic        [number]; default 50000 (10000 fungi); maximum length of intergenic regions
  --min_contig_in_predict [number]; default 500; minimum allowed length of contig in prediction step
  --min_gene_in_predict   [number]; default 300 (120 fungi); minimum allowed gene length in prediction step
  --gc_donor              [value];  default 0.001; transition probability to GC donor in the range 0..1; 
                          'off' switches GC donor model OFF
  --gc3          [number]; GC3 cutoff in training for grasses

Developer options
  --training     to run only training step of algorithm; applicable to ES, ET or EP
  --prediction   to run only prediction step of algorithms using species parameters from previously executed training; applicable to ES, ET or EP
  --usr_cfg      [filename]; use custom configuration from this file
  --ini_mod      [filename]; use this file with parameters for algorithm initiation
  --key_bin
  --debug
# -------------------

Back to Top

Installation

source code from GeneMarkES

System

64-bit Linux