

Using the Sapelo2 Cluster at the GACRC

Cluster New User Training Workshop

Georgia Advanced Computing Resource Center (GACRC)

EITS/University of Georgia

Zhuofei Hou zhuofei@uga.edu

Outline

- GACRC
- Sapelo2 Cluster
 - Diagram
 - Overview
 - Three Directories
 - Three Computational Queues
 - Software on Cluster
- Job Submission Workflow
- Work on Sapleo2

GACRC

- > We are a high-performance-computing (HPC) center at UGA
- We provide to the UGA research and education community an advanced computing environment:
 - HPC computing and networking infrastructure located at the Boyd Data Center
 - Comprehensive collection of scientific, engineering and business applications
 - Consulting and training services
- http://wiki.gacrc.uga.edu (GACRC Wiki)
- https://wiki.gacrc.uga.edu/wiki/Getting Help (GACRC Support)
- http://gacrc.uga.edu (GACRC Web)

Sapelo2 Cluster

Sapelo2: A Linux HPC cluster (64-bit Centos 7)

- > Two Nodes:
 - 1. Login node for batch job workflow: MyID@sapelo2.gacrc.uga.edu
 - 2. Transfer node for data transferring: MyID@xfer.gacrc.uga.edu
- > Three Directories:
 - 1. Home: Landing spot; 100GB quota; Backuped
 - 2. Global Scratch: High performance job working space; NO quota; NOT backuped
 - 3. Storage: Temporary data parking; 1TB quota (for group); Backuped (**ONLY accessible** from Transfer node!)
- Three Computational Queues: batch, highmem_q, gpu_q

Three Directories

Role	Directory	Intended Use	Quota	Accessible from	Backuped	Notes
Home	/home/MyID	Static data: 1. Scripts, source codes 2. Local software	100GB	Login	Yes	
Global Scratch	/lustre1/MyID	Current job data: data being read/written by running jobs	No Limit	Transfer	No	User to clean up! Subject to deletion in 30 days
Storage	/project/abclab	Temporary data parking: non-current active data	1TB (Initial)	Transfer	Yes	Group sharing possible

Three Directories (Cont.) – Accessing Directories from Nodes

Three Computational Queues

Queue	Node Feature	Total Nodes	Max RAM(GB) /Node	Cores /Node	Processor Type	GPU Cards /Node
batab	Intel	30	62	28	Intel Xeon	
batch	AMD	25	125	48	AMD Opteron	N/A
highmem_q	Intel	1	997	28		
gpu_q	GPU	2	94	12	Intel Xeon	7 NVIDIA K20Xm
PIMyID_q	variable					

Software on Cluster

- Software names are long and have a Easybuild toolchain name associated to it,
 e.g., foss-2016b
- 2. Software names are case-sensitive!
 - > ml avail: List all available software modules installed on cluster
 - > ml moduleName: Load a module into your working environment
 - ml: List modules currently loaded
 - > ml unload moduleName: Remove a module from your working environment
 - > ml spider pattern: Search module names matching a pattern (case-insensitive)

Job Submission Workflow

- 1. Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo: ssh MyID@sapelo2.gacrc.uga.edu
- 2. On Login node, change directory to global scratch : cd /lustre1/MyID
- 3. Create a working subdirectory for a job: mkdir ./workDir
- 4. Change directory to workDir: cd ./workDir
- 5. Transfer data from local computer to <u>workDir</u>: use <u>scp</u> or **SSH File Transfer** to connect Transfer node

 Transfer data on cluster to <u>workDir</u>: log on to Transfer node and then use <u>cp</u> or <u>mv</u>
- 6. Make a job submission script in workDir: nano ./sub.sh
- 7. Submit a job from workDir: qsub ./sub.sh
- 8. Check job status : qstat me or Cancel a job : qdel JobID

Step1: Log on to Login node - Mac/Linux using ssh

- 1. Open Terminal utility
- 2. Type command line: ssh MyID@sapelo2.gacrc.uga.edu
- 3. You will be prompted for your MyID password
- 4. Sapelo2 access requires ID verification using two-factor authentication with Archpass Duo.

If you are not enrolled in Archpass Duo, please refer to

https://eits.uga.edu/access and security/infosec/tools/archpass duo/ on how to enroll

https://wiki.gacrc.uga.edu/wiki/Connecting

Step1 (Cont.) - Mac/Linux

Use Terminal utility on Mac or Linux!

Step1 (Cont.) - Windows

- 1. Download and install SSH Secure Utilities: http://eits.uga.edu/hardware and software/software/
- 2. You can use PuTTY as an alternative: https://www.putty.org/

Step1 (Cont.) - Windows

Step2: On Login node change directory to global scratch

Once you logged on, your current directory will be your <u>home directory</u>

Use cd command to change your current directory to /lustre1/MyID

Use ls command to take a look in /lustre1/MyID

```
zhuofei@sapelo2-sub2 zhuofei$ ls
user_test workDir_Alex workDir_bk
```


Step3 - 4: Create and cd to a working subdirectory

Use mkdir command to make a subdirectory in /lustre1/MyID

```
zhuofei@sapelo2-sub2 zhuofei$ mkdir workDir
zhuofei@sapelo2-sub2 zhuofei$ ls
user_test workDir workDir_Alex workDir_bk
```

Use cd command to change your current directory to /lustre1/MyID/workDir

Step5: Transfer data from local computer to workDir - Mac/Linux

- 1. You need to connect to cluster's <u>Transfer node</u> (xfer.gacrc.uga.edu)
- 2. Open Terminal utility on <u>local computer</u> to use scp (-r) [Source] [Target]

E.g. 1: working on local computer, from Local → workDir on cluster

```
scp ./file zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/
scp -r ./folder/ zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/
```

E.g. 2: working on local computer, from workDir on cluster → Local

```
scp zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/file .
scp -r zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/folder/ .
```


Step5 (Cont.) - Windows

- 1. You need to connect to cluster's <u>Transfer node</u> (xfer.gacrc.uga.edu)
- 2. Use SSH File Transfer or FileZilla or WinSCP on local computer

Step5 (Cont.): Transfer data on cluster to workDir

- Log on to Transfer node (xfer.gacrc.uga.edu)
 - ✓ Mac/Linux: ssh MyID@xfer.gacrc.uga.edu (page 12, 13)
 - ✓ Windows: use SSH Secure Client app (page 14, 15)
- Landing folder: /home/MyID (Home)
- Transfer data between folders on cluster using cp, mv
- Directories you can access using full path:
 - 1. /home/MyID
 - 2. /lustre1/MyID
 - 3. /project/abclab
- Most file systems on Transfer are auto-mounted upon the first time full-path access, e.g.,
 cd /project/abclab/

Step6: Make a job submission script in workDir using nano

\$ nano sub.sh

nano is a small and friendly text editor on Linux.

Ctrl-x to save file and quit from nano

Step6 (Cont.)

- Copy a sample script from GACRC Wiki Software: https://wiki.gacrc.uga.edu/wiki/Bowtie2-Sapelo2
- 2. Modify it as needed for your computing

To run this example, you need to copy input data to your current working folder: cp -r /usr/local/training/index . cp /usr/local/training/myreads.fq .

```
zhuofei@sapelo2-sub2:/lustre1/zhuofei/workDir
File Edit View Search Terminal Help
  GNU nano 2.3.1
                             File: sub.sh
                                                                  Modified
#PBS -S /bin/bash
#PBS -q batch
#PBS -N bowtie2 test
#PBS -l nodes=1:ppn=1:Intel
#PBS -1 mem=2qb
#PBS -l walltime=1:00:00
#PBS -M zhuofei@uga.edu
#PBS -m ae
cd $PBS_0_WORKDIR
module load Bowtie2/2.3.3-foss-2016b
time bowtie2 -p 1 -x ./index/lambda_virus -U ./myreads.fg -S output.sam
   Get Help <mark>^0 WriteOut ^R Read File^Y Prev Page^K Cut Text ^C Cur Pos</mark>
            Exit
```


Step7: Submit a job from workDir using qsub

```
zhuofei@sapelo2-sub2 workDir$ pwd
/lustre1/zhuofei/workDir
zhuofei@sapelo2-sub2 workDir$ ls
index myreads.fq sub.sh
zhuofei@sapelo2-sub2 workDir$ qsub sub.sh
11943.sapelo2
```

sub.sh is job submission script to

- 1. specify computing resources:
- 2. load software using ml load
- 3. run any Linux commands you want to run
- 4. run the software

Step8: Check job status using qstat_me

```
zhuofei@sapelo2-sub2 workDir$ qstat me
Job ID
                                            Time Use S Queue
                  Name
                                   User
11943.sapelo2
                  bowtie2 test
                                   zhuofei
                                            00:06:40 C batch
                                  zhuofei
11944.sapelo2
                  bowtie2 test
                                            00:05:17 R batch
11946.sapelo2
                  bowtie2 test
                                  zhuofei
                                           00:12:51 R batch
                  bowtie2 test
11947.sapelo2
                                  zhuofei
                                                   0 R batch
11948.sapelo2
                  bowtie2 test
                                                   0 Q batch
                                   zhuofei
```

R: job is running

C: job completed (or canceled or crashed) and is not longer running. Jobs stay in this state for 24 hour

Q: job is pending, waiting for resources to become available

Note: "Time Use" is the CPU time, instead of the wall-clock time of your job staying on cluster!

Step8 (Cont.): Cancel job using qdel

```
zhuofei@sapelo2-sub2 workDir$ qdel 11947
zhuofei@sapelo2-sub2 workDir$ qstat me
Job ID
                   Name
                                    User
                                                 Time Use S Queue
11943.sapelo2
                   bowtie2 test
                                    zhuofei
                                                 00:06:40 C batch
                                                 00:05:17 R batch
11944.sapelo2
                   bowtie2 test
                                    zhuofei
                                                 00:12:51 R batch
11946.sapelo2
                   bowtie2 test
                                    zhuofei
11947.sapelo2
                   bowtie2 test
                                                 00:00:09 C batch
                                    zhuofei
11948.sapelo2
                   bowtie2 test
                                    zhuofei
                                                        0 Q batch
```

job 11947 status is changed from R to C C status will stay in list for 24 hour

Step8 (Cont.): Check Job using qstat -n -u MyID

```
zhuofei@sapelo2-sub2 workDir$ qstat -n -u zhuofei
dispatch.ecompute:
                                                                    Req'd
                                                             Req'd
                                                                                Elap
Job ID Username Oueue Jobname SessID NDS
                                                                   Time S Time
                                                       TSK
                                                             Memory
12175.sapelo2 zhuofei batch bowtie2 test 132442 1
                                                                    01:00:00 R 00:23:44
                                                             2qb
  n238/0  job is running on node238/CPU0
12176.sapelo2 zhuofei batch bowtie2 test
                                           67226 1 1
                                                             2qb
                                                                    01:00:00 R
                                                                                00:20:44
  n237/0
12177.sapelo2 zhuofei batch bowtie2 test 119643 1
                                                             2qb
                                                                    01:00:00 R
                                                                                00:05:44
Note: "Elap Time" is the wall-clock time, instead of the CPU time, which qstat_me can give you!
```


Step8 (Cont.): Check all Jobs on cluster using qstat

Job ID	Name	User	Time Use S Queue
11267.sapelo2	L80-500	jx57780	164:32:5 R batch
11269.sapelo2	L80-502	jx57780	164:55:5 C batch
11270.sapelo2	L80-503	jx57780	165:38:5 C batch
11607.sapelo2	canu	gd98309	3414:46: R bergman_q
11726.sapelo2	3_constoptTS	sm39091	3157:30: R wheeler_q
11729.sapelo2	2 constoptTS	sm39091	2731:29: R wheeler q
11790.sapelo2	sp2_run19b_dye	castelao	4412:52: C batch
11804.sapelo2	e-4 Nnoise=64	cotter	98:26:20 R batch
11806.sapelo2	e-4 Nnoise=64	cotter	98:14:22 R batch
11987.sapelo2	th W18-T5-L4	qbcg	08:02:40 C batch
11989.sapelo2	matlabjob	zhyw86	0 C batch
11990.sapelo2	1 constoptTS	sm39091	445:42:1 R wheeler q
11991.sapelo2	1_constoptTS	sm39091	444:51:4 R wheeler_q
11992.sapelo2	cl W18-T3-D1	qbcg	03:04:21 C batch

Workflow Diagram

Work on Sapelo2 - GACRC Wiki

Main Page: http://wiki.gacrc.uga.edu

Running Jobs: https://wiki.gacrc.uga.edu/wiki/Running_Jobs on Sapelo2

Software: https://wiki.gacrc.uga.edu/wiki/Software

Transfer File: https://wiki.gacrc.uga.edu/wiki/Transferring-Files

Linux Command: https://wiki.gacrc.uga.edu/wiki/Command-List

Training: https://wiki.gacrc.uga.edu/wiki/Training

User Account Request: https://wiki.gacrc.uga.edu/wiki/User Accounts

Support: https://wiki.gacrc.uga.edu/wiki/Getting-Help

Get Help

Job Troubleshooting:

Please tell us details of your question or problem, including but not limited to:

- ✓ Your user name
- ✓ Your job ID
- ✓ Your working directory
- ✓ The queue name and command you used to submit the job

Software Installation:

- ✓ Specific name and version of the software
- ✓ Download website
- ✓ Supporting package information if have

Please note to make sure the correctness of datasets being used by your jobs!

Request Support

* indicates Required	fields.
Your Name *	John smith
MyID *	jsmith
E-mail *	jsmith@uga.edu
Phone Number	411-555-1212
Brief Description	my job can not be started
Request Details *	(less than 2,000 characters)
Cluster	□ zcluster □ sapelo ☑ sapelo2 □ other Review

^{*} For questions on cluster or software, please include the command/script used, working path and working nodes (interactive / queue name) if applicable.

^{*} For software installation, please specify software name, version and include link to the software if applicable.

^{*} Please review your message on the next page and then click the Submit button.

Appendix - Run Batch Jobs

- Components you need to run a job:
 - Software already installed (cluster software or the one installed by yourself)
 - Job submission script to
 - 1. specify computing resources:
 - ✓ number of nodes and cores
 - √ amount of memory
 - ✓ node's feature
 - ✓ maximum wallclock time
 - 2. load software using ml load (for cluster software)
 - 3. run any Linux commands you want to run, e.g., pwd, mkdir, cd, echo, etc.
 - run the software
- Common queueing commands you need:
 - qsub, qstat_me, qstat, qdel
 - > qstat -f, showq

Example 1: Serial job script running NCBI Blast+ using 1 CPU

#PBS -S /bin/bash → Linux default shell (bash) #PBS -q batch Queue name (batch) #PBS -N testBlast Job name (testBlast) → Number of nodes (1), number of cores (1), node type (Intel) #PBS -l nodes=1:ppn=1:Intel #PBS -I mem=20gb → Maximum amount of RAM memory (20 GB) used by the job → Maximum wall-clock time (48 hours) for the job, default 6 minutes #PBS - I walltime = 48:00:00 cd \$PBS_O_WORKDIR → Compute node will use the directory from which the job is submitted as the working directory, i.e., /lustre1/MyID/workDir ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14 → Load the module of ncbiblast+, version 2.6.0 time blastn [options] ... Run blastn with 'time' command to measure the amount of time it

https://wiki.gacrc.uga.edu/wiki/BLAST%2B-Sapelo2

takes to run the application

*Example 2: Threaded job script running NCBI Blast+ using 4 CPUS

```
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=4:Intel
                                      → Number of nodes (1), number of cores (4), node type (AMD)
#PBS -I mem=20gb
                                          Number of cores requested (4) = Number of threads (4)
#PBS - I walltime = 480:00:00
#PBS -M jsmith@uga.edu
                                      → Email address to receive a notification for computing resources
#PBS -m ae
                                      > Send email notification when job aborts (a) or terminates (e)
                                      → Standard error file (testBlast.e12345) will be merged into standard
#PBS -i oe
                                         out file (testBlast.o12345)
cd $PBS_O_WORKDIR
ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14
time blastn -num_threads 4 [options] ...
                                           Run blastn with 4 threads (-num threads 4)
```


*Example 3: MPI job script running RAxML using 2 full nodes

```
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testRAxML
#PBS -l nodes=2:ppn=28:Intel
                                → Number of nodes (2), number of cores (28), node type (Intel)
#PBS -l walltime=120:00:00
                                    Total cores requested = 2 \times 28 = 56
                                    We suggest, Number of MPI Processes (50) ≤ Number of cores requested (56)
#PBS -I mem=100gb
cd $PBS O WORKDIR
ml load RAxML/8.2.11-foss-2016b-mpi-avx
                                              To run raxmlHPC-MPI-AVX, MPI version using OpenMPI
mpirun –np 50 raxmlHPC-MPI-AVX [options]
                                              Run raxmlHPC-MPI-AVX with 50 MPI processes (-np 50),
                                                 default 56
```


Thank You!