

Introduction to HPC Using zcluster at GACRC

On-class BCMB8330

Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu

Outline

- What is GACRC?
- What is zcluster?
- How does zcluster operate?
- How to work with zcluster?

What is GACRC?

Who Are We?

- Georgia Advanced Computing Resource Center
- Collaboration between the Office of Vice President for Research (OVPR) and the Office of the Vice President for Information Technology (OVPIT)
- Guided by a faculty advisory committee (GACRC-AC)

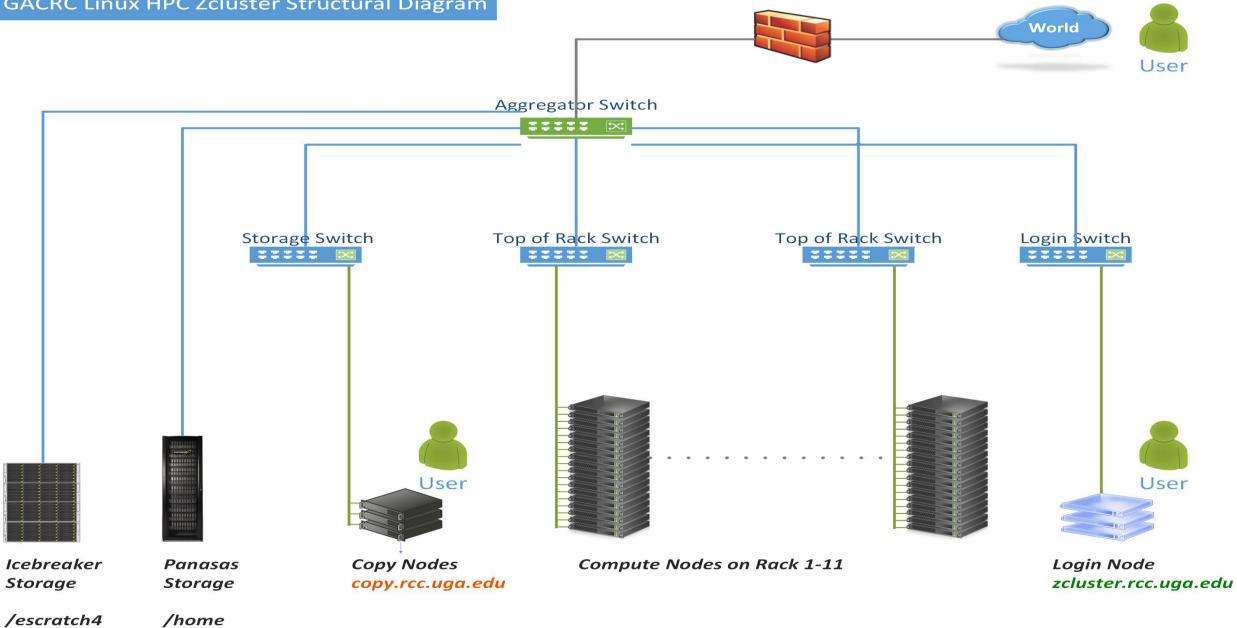
Why Are We Here?

To provide computing hardware and network infrastructure in support of highperformance computing (HPC) at UGA

Where Are We?

http://gacrc.uga.edu (Web)

http://wiki.gacrc.uga.edu (Wiki)


- <u>http://gacrc.uga.edu/help/</u> (Web Help)
- <u>https://wiki.gacrc.uga.edu/wiki/Getting_Help</u> (Wiki Help)

What is zcluster?

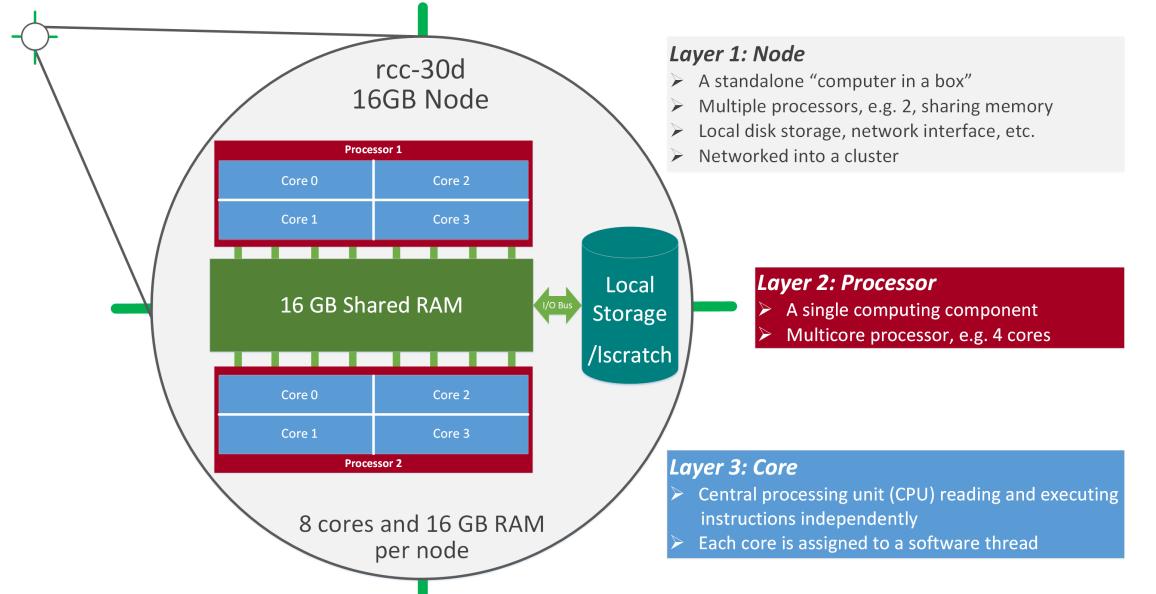
- Cluster Structural Diagram
- General Information
- Computing Resources
- Storage Environment

What is zcluster – General Information

GACRC zcluster is a Linux high performance computing (HPC) cluster:

qlogin

- Operating System: 64-bit Red Hat Enterprise Linux 5 (RHEL 5)
- Login Node: zcluster.rcc.uga.edu
 Interactive Node: compute-14-7/9


Copy Node: copy.rcc.uga.edu

What is zcluster – Computing Resources

Queue Type	Queue Name	Nodes	Processor	CPU Cores/Node	RAM(GB)/Node	NVIDIA GPU
Regular	rcc-30d	45	Intel Xeon	12	48	N/A
		150		8	16	
High Memory	rcc-m128-30d	1	Intel Xeon	8	128	N/A
		4		8	192	
		10		12	256	
	rcc-m512-30d	2		32	512	
Multi Core	rcc-mc-30d	6	AMD Opteron	32	64	N/A
Interactive	interq	2	AMD Opteron	48	132	N/A
GPU	rcc-sgpu-30d	2	Intel Xeon	8	48	4 Tesla S1070 cards
	rcc-mgpu-30d	2		12	48	9 Tesla (Fermi) M2070 cards
	rcc-kgpu-30d	4		12	96	32 Tesla (Kepler) K20Xm cards
	fsr12	1		12	96	8 Tesla (Kepler) K20Xm cards

ÎGACRC

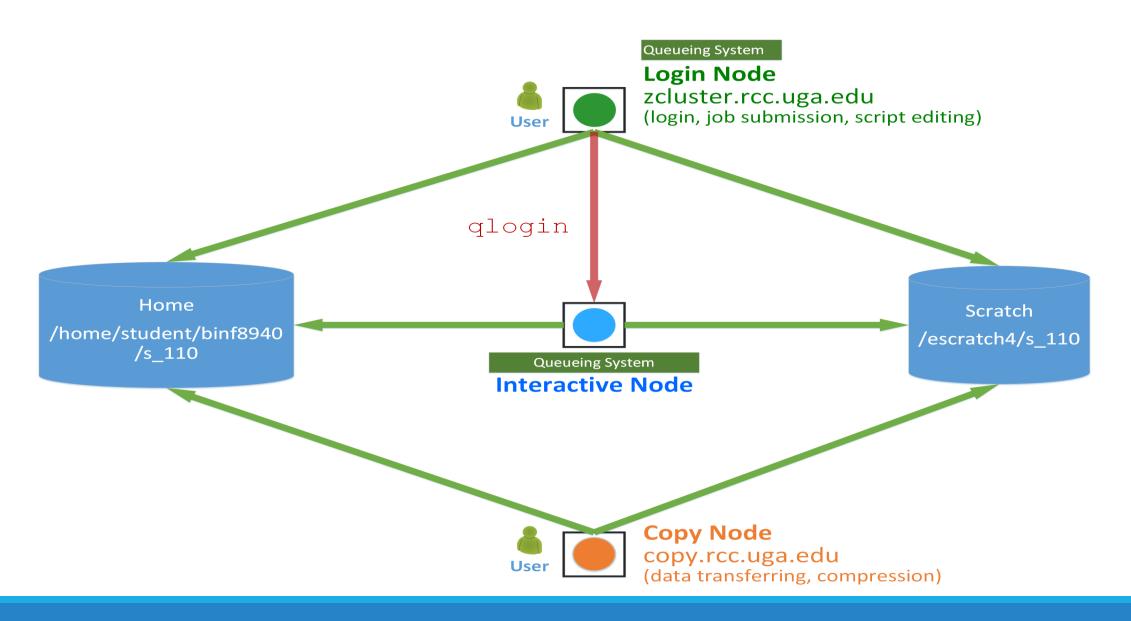
What is zcluster – Storage Environment

- Home directory → /home/student/bcmb8330/s_01
 - Mounted and visible on all nodes, with a quota of ~100GB

- - > Create with make escratch command
 - Visible to all nodes with a quota of 4TB
 - > To be deleted after **37 days**

What is zcluster – Storage Environment

2 Filesystems	Role	Quota	Accessible from	Intended Use
/home/student/bcmb8330/s_01	Home	100GB	zcluster.rcc.uga.edu (Login)	Highly static data being used frequently
/escratch4/s_01	Scratch	4TB	copy.rcc.uga.edu (Copy) Interactive nodes (Interactive)	Temporarily storing large data being used by jobs


3 Main Functions	On/From-Node	Related Filesystem
Login Landing	Login or Copy	/home/student/bcmb8330/s_01 (Home) (Always!)
Batch Job Submitting	Login or Interactive	/escratch4/s_01 (Scratch) (<mark>Suggested!</mark>) /home/student/bcmb8330/s_01 (Home)
Data Archiving , Compressing and Transferring	Сору	/escratch4/s_01 (Scratch) /home/student/bcmb8330/s_01 (Home)

How does zcluster operate?

Next Page

How to work with zcluster?

Before we start:

• To get zcluster to be your best HPC buddy

GACRC Wiki: <u>http://wiki.gacrc.uga.edu</u>

GACRC Support: https://wiki.gacrc.uga.edu/wiki/Getting-Help

How to work with zcluster?

To submit your ticket to GACRC?

Job Troubleshooting:

Please tell us details of your question or problem, including but not limited to:

- ✓ Your user name
- ✓ Your job ID
- ✓ Your working directory
- ✓ The queue name and command you used to submit the job
- Software Installation:
 - \checkmark Specific name and version of the software
 - ✓ Download website
 - ✓ Supporting package information if have

Note: It's USER's responsibility to make sure the correctness of datasets being used by jobs!

How to work with it?

• On cluster, you are not alone...... Each user is sharing finite resources, e.g., CPU cycles, RAM, disk storage, network bandwidth, with other researchers. *What you do may affect other researchers on the cluster*.

6 rules of thumb to remember:

- NO jobs running on login node
- > NO multi-threaded job running with only 1 core requested
- > NO large memory job running on regular nodes
- > NO long job running on interactive node
- > NO small memory job running on large memory nodes
- Use the copy node for file transfer and compression

How to work with zcluster?

- Start with zcluster
- Connect & Login
- > Transfer Files
- Software Installed
- Run Interactive Jobs
- Submit Batch GPU Job with AMBER
 - How to submit a job
 - How to check job status, cancel a job, etc.

How to work with zcluster – Start with zcluster

- > You need a Class User Account : s_01@zcluster.rcc.uga.edu
- Use passwd command to change initial temporary password to
 - a permanent one

How to work with zcluster – Connect & Login

• Open a connection: Open a terminal and ssh to your account

ssh s 01@zcluster.rcc.uga.edu

or

ssh -X s 01@zcluster.rcc.uga.edu

(¹-X is for X windows application running on the cluster to be forwarded to your local machine ² If using Windows, use SSH client to open connection, get from UGA download software page)

• Logging in: You will be prompted for your zcluster password

s 01@zcluster.rcc.uga.edu's password:

(³ On Linux/Mac, when you type in the password, the prompt blinks and does not move)

• Logging out: exit to leave the system

s_01@zcluster:~\$ exit

How to work with zcluster – Transfer Files

User's local

Copy node (copy.rcc.uga.edu) of zcluster

On Linux, Mac or cygwin on Windows : scp [Source] [Target]
 E.g. 1: On local machine, do Local → zcluster

scp file1 s_01@copy.rcc.uga.edu:/escratch4/s_01/s_01_Feb_09/

scp *.dat s 01@copy.rcc.uga.edu:/escratch4/s 01/s 01 Feb 09/

E.g. 2: On local machine, do zcluster \rightarrow Local

scp s_01@copy.rcc.uga.edu:/escratch4/s_01/s_01_Feb_09/*.dat ./

• On Window: SSH Secure Client File Transfer, WinSCP, FileZilla etc.

How to work with zcluster – Run Interactive Jobs

From login node, **qlogin** command to open an **interactive** session:

qlogin

Login Node: zcluster.rcc.uga.edu

s_110@zcluster:~\$qlogin
Your job 1391816 ("QLOGIN") has been submitted
waiting for interactive job to be scheduled
Your interactive job 1391816 has been successfully scheduled.
•••
compute-14-7.local\$

- Current maximum runtime is 12 hours
- When you are done, exit to log out! ${\bullet}$

How to work with zcluster – Softwares Installed

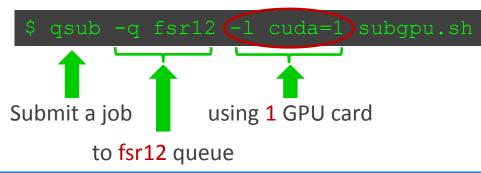
- Perl, Python, Java, awk, sed, C/C++ and Fortran compilers
- Matlab, Maple, R, AMBER
- Many Bioinformatics applications: NCBI Blast+, Velvet, Trinity, TopHat, MrBayes, SoapDeNovo, SAMtools, Mafft, RAxML, PASTA, MrBayes, and MP-EST etc.
- RCCBatchBlast (RCCBatchBlastPlus) to distribute NCBI Blast (NCBI Blast+) searches to multiple nodes.
- > Many Bioinformatics Databases: NCBI Blast, Pfam, uniprot, etc.
- For a complete list of applications installed: https://wiki.gacrc.uga.edu/wiki/Software

How to work with zcluster – Submit Batch Jobs

- Components you need to submit a batch job:
 - Software already installed on zcluster
 - Job submission script to run the software, and
 - ✓ Specify working directory
 - Export environment variables, e.g.,

PATH (searching path for executables)

- LD_LIBRARY_PATH (searching paths for shared libraries)
- Common commands you need:
 - qsub with specifying queue name, GPU cards number, etc.
 - qstat, qdel
 - qacct, qsj, etc.



How to work with zcluster – Batch GPU Job with AMBER

• Step 1: Create a job submission script *subgpu.sh* running Amber14:

#!/bin/bash	→ Linux default shell (bash)	
cd working_directory	Specify and enter (cd) working directory (e.g., /escratch4/s_01/s_01_Feb_09)	
source /usr/local/amber/14/amber.sh		
export LD_LIBRARY_PATH=/usr/local/cuda/5.0.35-gcc447/lib64:\${LD_LIBRARY_PATH}		
/usr/local/amber/14/bin/pmemd.cuda -O -i mdin -o mdout -p prmtop -c inpcrd		

• Step 2: Submit *subgpu.sh* to **fsr12** queue:

How to work with zcluster – Check and Cancel Jobs

• To check the status of all queued and running jobs: qstat

qstat	ightarrow shows your job in the pool
qstat –u "*"	ightarrow shows all the jobs in the pool
qstat –j 12345	shows detailed information, e.g., maxymem, about the job with JOBID 12345
qstat –g t	Iist all nodes used by your jobs

- To cancel a queued or running job: qdel
 - qdel −u zhuofei→ deleted all your jobsqdel 12345→ deletes your job with JOBID 12345
- To list detailed information about a job: qsj, qacct

qsj 12345→ shows information, e.g., maxvmem, about the RUNNING job with JOBID 12345qacct -j 12345→ shows information, e.g., maxvmem, about the ENDED job with JOBID 12345

Thank You!