
Georgia Advanced Computing Resource Center
University of Georgia

Zhuofei Hou, HPC Trainer
zhuofei@uga.edu

Introduction to Linux Basics
Part-II Shell Scripting

mailto:zhuofei@uga.edu

Outline

• What is GACRC?

• What are Linux Shell and Shell Scripting?

• Shell Scripting Syntax Basics

• Real Shell Scripting Examples

What is GACRC?
Who Are We?
 Georgia Advanced Computing Resource Center
 Collaboration between the Office of Vice President for Research (OVPR) and

the Office of the Vice President for Information Technology (OVPIT)

 Guided by a faculty advisory committee (GACRC-AC)

Why Are We Here?
 To provide computing hardware and network infrastructure in support of high-

performance computing (HPC) at UGA

Where Are We?
 http://gacrc.uga.edu (Web) http://wiki.gacrc.uga.edu (Wiki)
 http://gacrc.uga.edu/help/ (Web Help)
 https://wiki.gacrc.uga.edu/wiki/Getting_Help (Wiki Help)

http://gacrc.uga.edu/
http://wiki.gacrc.uga.edu/
http://gacrc.uga.edu/help/
https://wiki.gacrc.uga.edu/wiki/Getting_Help

What are Linux Shell and Shell Scripting?
 Linux: A full-fledged operating system with 4 major parts:

I. Kernel: Low-level OS, handling files, disks, RAM, networking, etc.

II. Supplied Programs: Web browsing, Audio, Video, DVD burning……

III. Shell: A command-line user interface for a user to type and run
commands:

 Bourne Shell (sh)

 Korn Shell (ksh) UNIX standard shells

 C Shell (csh)

 Bourne-Again Shell (bash) Linux default shell

IV. X: A graphical system providing graphical user interface(GUI)

What are Linux Shell and Shell Scripting?
 Linux Shell: A place to type and run commands on Linux

 Command-line interface for user to type commands

 Command interpreter to run commands

 Programming environment for scripting

 Linux default: Bourne-Again Shell (bash)

 To open a shell on:

Local Linux/Mac Terminal

Local Windows SSH Secure Client or Cygwin

Remote Linux
machine

A shell will run immediately when log in

What are Linux Shell and Shell Scripting?
 Linux Shell Script: A text file running as a program, to accomplish

tasks on Linux that a single command cannot
 Shell Variables (assignment, exporting)

 Expansion (~, $, ` `, $(()))

 Quoting (‘ ’, “ ”)

 Commands (|, ;)

 Redirection (>, >>, 2>, 2>&1, >&, <)

 Flow Control (if-then-else)

 Loops (for, while)

 Linux Shell Scripting: Programming with Linux shell scripts

Shell Scripting Syntax Basics – Shell Variables
 Variable Assignment: name=value (NO space! name = value is wrong!)

$ var1=kiwi # all values held in variables are strings! var1=“kiwi”

$ echo $var1 # echo prints the value of var1 to screen

$ kiwi

$ var2=7 # same as var2=“7”

$ echo $var2

$ 7

$ var3=$var1+7 # same as var3=“kiwi+7”

$ echo $var3

$ kiwi+7

$ var4=10 # same as var4=“10”

$ echo $var2+$var4

$ 7+10

Shell Scripting Syntax Basics – Shell Variables
 Variable Exporting: export var (var is a global environment variable for use in

shell’s child processes running in subshells; Otherwise, it is a local variable!)

 Numeric Expression Evaluation: expr or $((…)

$ var1=kiwi

$ export var2=apple # var2=apple; export var2

$ printenv var1 # printenv prints env variables

$

$ printenv var2

$ apple

export var2=apple
program1

program1 is running and
var2 is available

Shell

Subshell

$ var1=10

$ var2=20

$ expr $var1 + $var2 # space and $ are required!

$ 30

$ echo $((var1+var2)) # space and $ are not required!

$ 30

Shell Scripting Syntax Basics – Shell Variables
 bash automatically sets some special shell variables at startup time (Note: Some

of them may be environment variables*)

Variable Name Definition

HOME* Home directory of the current user

PATH* Search path for commands (colon-separated dirs in which shell looks for commands)

PWD* Current working directory

SHELL* Default shell currently being used

USER* Current user’s name

UID Numeric user ID of the current user

LD_LIBRARY_PATH* Shared library search path

Shell Scripting Syntax Basics – Shell Variables
 Why we have those automatically set shell variables?
 Configure your working environment on Linux as you wish!

 Example: .bash_profile for interactive login shell

if [-f ~/.bashrc]; then # if .bashrc exists and is a regular file, then

. ~/.bashrc # run/source it in current shell to

fi # make interactive login and non-login shell

have # the same environment

User specific environment and startup programs

export PATH=$PATH:$HOME/bin

Zhuofei 2015-05-29

export PATH=$PATH:$HOME/scripts

Shell Scripting Syntax Basics – Shell Variables
 Suggestion 1: “$var” to prevent runtime errors in script

 Suggestion 2: ${var} to prevent unexpected behavior

$ var=“My Document” # “My Document” is a subdirectory

$ cd $var # same as cd My Document, 2 args

$ -bash: cd: My: No such file or directory

$ cd “$var” # same as cd “My Document”, 1 args

My Document$

$ var=“apple”

$ echo “Mary has 3 $vars” # variable vars is empty!

$ Mary has 3

$ echo “Mary has 3 {$var}s” # {$var} is not working!

$ Mary has 3 {apple}s

$ echo “Mary has 3 ${var}s” # ${var} is working!

$ Mary has 3 apples

Shell Scripting Syntax Basics – Expansion
 Tilde Expansion (Home Expansion): ~

 Variable Expansion: $

 Command Substitution: `command` (` is back quota!)

 Numeric Expansion: $((expression))

$ cd ~username # home directory associated username

$ cd ~ # replaced by $HOME

$ cd ~/ # same as above

$ var=24

$ echo ${var}th # outputs 24th; ${var} to prevent unexpected behavior!

$ cd `pwd` # same as cd /home/abclab/jsmith/workingDir

$ echo $((((5+3*2)-1)/2)) # outputs 5; space is not required!

$ var1=24 ; var2=10 # ; for a sequence of commands

$ echo $((var1+var2)) # outputs 34

Shell Scripting Syntax Basics – Quoting
 Linux special characters:

 Quoting rules in bash:

1. All special characters are disabled by enclosing double quotes “ ”, except

for !, $, `, \, and {

2. All special characters are disabled by enclosing single quotes ‘ ’

3. All special characters are forcedly disabled by a preceding backslash \

` ~ ! # % ^ & * () - + / \ | ; ‘ “ , . < > ? {

Shell Scripting Syntax Basics – Quoting
 Quoting Examples

$ FRUIT=apples

$ echo ‘I like $FRUIT’ # $ is disabled by ‘ ’

$ I like $FRUIT

$ echo “I like $FRUIT” # $ is not disabled by “ ”

$ I like apples

$ echo “I like \$FRUIT” # $ is disabled forcedly by preceding \

$ I like $FRUIT

$ echo ‘`pwd`’ # ` is disabled by ‘ ’

$ `pwd`

$ echo “`pwd`” # ` is not disabled by “ ”

$ /home/abclab/jsmith

Shell Scripting Syntax Basics – Commands
 Pipeline command1 | command2 | … connects std output of command1 to the

std input of command2, and so on (Demonstration)

 List command1 ; command2 ; … ; simply runs commands in sequence on a
single command line (Demonstration)

$ ls -l | more

$ ls -l | grep ".sh"

$ ps aux | awk '{if($1=="zhuofei") print $0}' | more

$ qstat -u "*" | awk '{print $4}' | sort | less

$ qstat -u "*" | grep ‘qw' | awk 'BEGIN{n=0} {n++} END{printf "%d jobs waiting on queue\n", n}'

$ pwd ; ls

$ cd .. ; ls

$ mkdir ./subdir ; cd ./subdir ; touch file1 ; ls

Shell Scripting Syntax Basics – Redirection
 Standard output redirection: > and >>

 Standard error redirection: 2>, 2>&1 and >&

 Standard input redirection: <

 General usage:

$ ls > outfile # std output of a command is written to outfile

$ ls >> outfile # std output of a command is appended to outfile

$./myprog > outfile # std output of a program is written to outfile

$./myprog > outfile 2> errorfile # std output and error separate files

$./myprog > outfile 2>&1 # std output and error single file

$./myprog >& outfile # same as above

$./myprog < infile # std input is from infile

$./myprog < infile > outfile 2>&1

Shell Scripting Syntax Basics – Flow Control
 If-fi Block:

 Example (Demonstration):
echo “Please enter you name:”

read name # read a line from standard input

if [“$name” == “zhuofei”] # true if strings are equal

then

echo “Hello, ${name}!”

else

echo “Hi, ${name}, you are not zhuofei!”

fi

if [test expression] : if test expression is evaluated to be true

then

body1

else

body2

fi

Shell Scripting Syntax Basics – Flow Control
Test Expression Description

-e file True if file exists

-d or -f file True if file exists and is a directory or a regular file

-r or -w or -x file True if file exists and is readable or writable or executable

-s file True if file exists and has a nonzero size

file1 -nt or -ot file2 True if file1 is newer or older than file2

-z or -n string True if the length of string is zero or nonzero

str1 == str2 True if the strings are equal

str1 != str2 True if the strings are not equal

arg1 OP arg2 OP is one of –eq, -ne, -lt, -le, -gt, or -ge. Arg1 and arg2 may be +/- integers

! expr True if expr is false

expr1 -a expr2 True if both expr1 AND expr2 are true

expr1 -o expr2 True if either expr1 OR expr2 is true

File testing

String testing

Logical testing

ARITH testing

Shell Scripting Syntax Basics – Loops
 for Loop: while Loop:

 Example (Demonstration):

for file in *.doc *.docx

do

echo "$file is a MS word file!"

done

for variable in list

do

body

done

while [test expression]

do

body

done

i=1

while [$i -le 10]

do

echo $i

i=`expr $i + 1`

done

Real Shell Scripting Examples
#!/bin/bash

SUBDIR=`pwd`

CTR=1

for sub in ${SUBDIR}/*.sh ; do

if ["`basename ${sub}`" != "`basename $0`"] ; then

qsub -q rcc-30d ${sub} > ${SUBDIR}/outfile_${CTR}

echo "`basename ${sub}` submitted!"

CTR=$(($CTR+1))

fi

done

printf "\nTotally %d jobs submitted!\n\n" $(($CTR-1))

qstat -u `id -un`

Real Shell Scripting Examples
 Example 2: a serial job submission script on zcluster

 Example 3: a MPI job submission script on zcluster (default MPICH2 and PGI compilers)

#!/bin/bash

cd `pwd`

time ./myprog < myin > myout

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_zcluster

#!/bin/bash

cd `pwd`

Export LD_LIBRARY_PATH=/usr/local/mpich2/1.4.1p1/pgi123/lib:${LD_LIBRARY_PATH}

mpirun -np $NSLOTS ./myprog

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_zcluster

Thank You!

