
Georgia Advanced Computing Resource Center
University of Georgia

Zhuofei Hou, HPC Trainer
zhuofei@uga.edu

Introduction to Linux Basics
Part-II Shell Scripting

mailto:zhuofei@uga.edu

Outline

• What is GACRC?

• What are Linux Shell and Shell Scripting?

• Shell Scripting Syntax Basics

• Real Shell Scripting Examples

What is GACRC?
Who Are We?
 Georgia Advanced Computing Resource Center
 Collaboration between the Office of Vice President for Research (OVPR) and

the Office of the Vice President for Information Technology (OVPIT)

 Guided by a faculty advisory committee (GACRC-AC)

Why Are We Here?
 To provide computing hardware and network infrastructure in support of high-

performance computing (HPC) at UGA

Where Are We?
 http://gacrc.uga.edu (Web) http://wiki.gacrc.uga.edu (Wiki)
 http://gacrc.uga.edu/help/ (Web Help)
 https://wiki.gacrc.uga.edu/wiki/Getting_Help (Wiki Help)

http://gacrc.uga.edu/
http://wiki.gacrc.uga.edu/
http://gacrc.uga.edu/help/
https://wiki.gacrc.uga.edu/wiki/Getting_Help

What are Linux Shell and Shell Scripting?
 Linux: A full-fledged operating system with 4 major parts:

I. Kernel: Low-level OS, handling files, disks, RAM, networking, etc.

II. Supplied Programs: Web browsing, Audio, Video, DVD burning……

III. Shell: A command-line user interface for a user to type and run
commands:

 Bourne Shell (sh)

 Korn Shell (ksh) UNIX standard shells

 C Shell (csh)

 Bourne-Again Shell (bash)  Linux default shell

IV. X: A graphical system providing graphical user interface(GUI)

What are Linux Shell and Shell Scripting?
 Linux Shell: A place to type and run commands on Linux

 Command-line interface for user to type commands

 Command interpreter to run commands

 Programming environment for scripting

 Linux default: Bourne-Again Shell (bash)

 To open a shell on:

Local Linux/Mac Terminal

Local Windows SSH Secure Client or Cygwin

Remote Linux
machine

A shell will run immediately when log in

What are Linux Shell and Shell Scripting?
 Linux Shell Script: A text file running as a program, to accomplish

tasks on Linux that a single command cannot
 Shell Variables (assignment, exporting)

 Expansion (~, $, ` `, $(()))

 Quoting (‘ ’, “ ”)

 Commands (|, ;)

 Redirection (>, >>, 2>, 2>&1, >&, <)

 Flow Control (if-then-else)

 Loops (for, while)

 Linux Shell Scripting: Programming with Linux shell scripts

Shell Scripting Syntax Basics – Shell Variables
 Variable Assignment: name=value (NO space! name = value is wrong!)

$ var1=kiwi # all values held in variables are strings! var1=“kiwi”

$ echo $var1 # echo prints the value of var1 to screen

$ kiwi

$ var2=7 # same as var2=“7”

$ echo $var2

$ 7

$ var3=$var1+7 # same as var3=“kiwi+7”

$ echo $var3

$ kiwi+7

$ var4=10 # same as var4=“10”

$ echo $var2+$var4

$ 7+10

Shell Scripting Syntax Basics – Shell Variables
 Variable Exporting: export var (var is a global environment variable for use in

shell’s child processes running in subshells; Otherwise, it is a local variable!)

 Numeric Expression Evaluation: expr or $((…)

$ var1=kiwi

$ export var2=apple # var2=apple; export var2

$ printenv var1 # printenv prints env variables

$

$ printenv var2

$ apple

export var2=apple
program1

program1 is running and
var2 is available

Shell

Subshell

$ var1=10

$ var2=20

$ expr $var1 + $var2 # space and $ are required!

$ 30

$ echo $((var1+var2)) # space and $ are not required!

$ 30

Shell Scripting Syntax Basics – Shell Variables
 bash automatically sets some special shell variables at startup time (Note: Some

of them may be environment variables*)

Variable Name Definition

HOME* Home directory of the current user

PATH* Search path for commands (colon-separated dirs in which shell looks for commands)

PWD* Current working directory

SHELL* Default shell currently being used

USER* Current user’s name

UID Numeric user ID of the current user

LD_LIBRARY_PATH* Shared library search path

Shell Scripting Syntax Basics – Shell Variables
 Why we have those automatically set shell variables?
 Configure your working environment on Linux as you wish!

 Example: .bash_profile for interactive login shell

if [-f ~/.bashrc]; then # if .bashrc exists and is a regular file, then

. ~/.bashrc # run/source it in current shell to

fi # make interactive login and non-login shell

have # the same environment

User specific environment and startup programs

export PATH=$PATH:$HOME/bin

Zhuofei 2015-05-29

export PATH=$PATH:$HOME/scripts

Shell Scripting Syntax Basics – Shell Variables
 Suggestion 1: “$var” to prevent runtime errors in script

 Suggestion 2: ${var} to prevent unexpected behavior

$ var=“My Document” # “My Document” is a subdirectory

$ cd $var # same as cd My Document, 2 args

$ -bash: cd: My: No such file or directory

$ cd “$var” # same as cd “My Document”, 1 args

My Document$

$ var=“apple”

$ echo “Mary has 3 $vars” # variable vars is empty!

$ Mary has 3

$ echo “Mary has 3 {$var}s” # {$var} is not working!

$ Mary has 3 {apple}s

$ echo “Mary has 3 ${var}s” # ${var} is working!

$ Mary has 3 apples

Shell Scripting Syntax Basics – Expansion
 Tilde Expansion (Home Expansion): ~

 Variable Expansion: $

 Command Substitution: `command` (` is back quota!)

 Numeric Expansion: $((expression))

$ cd ~username # home directory associated username

$ cd ~ # replaced by $HOME

$ cd ~/ # same as above

$ var=24

$ echo ${var}th # outputs 24th; ${var} to prevent unexpected behavior!

$ cd `pwd` # same as cd /home/abclab/jsmith/workingDir

$ echo $((((5+3*2)-1)/2)) # outputs 5; space is not required!

$ var1=24 ; var2=10 # ; for a sequence of commands

$ echo $((var1+var2)) # outputs 34

Shell Scripting Syntax Basics – Quoting
 Linux special characters:

 Quoting rules in bash:

1. All special characters are disabled by enclosing double quotes “ ”, except

for !, $, `, \, and {

2. All special characters are disabled by enclosing single quotes ‘ ’

3. All special characters are forcedly disabled by a preceding backslash \

` ~ ! # % ^ & * () - + / \ | ; ‘ “ , . < > ? {

Shell Scripting Syntax Basics – Quoting
 Quoting Examples

$ FRUIT=apples

$ echo ‘I like $FRUIT’ # $ is disabled by ‘ ’

$ I like $FRUIT

$ echo “I like $FRUIT” # $ is not disabled by “ ”

$ I like apples

$ echo “I like \$FRUIT” # $ is disabled forcedly by preceding \

$ I like $FRUIT

$ echo ‘`pwd`’ # ` is disabled by ‘ ’

$ `pwd`

$ echo “`pwd`” # ` is not disabled by “ ”

$ /home/abclab/jsmith

Shell Scripting Syntax Basics – Commands
 Pipeline command1 | command2 | … connects std output of command1 to the

std input of command2, and so on (Demonstration)

 List command1 ; command2 ; … ; simply runs commands in sequence on a
single command line (Demonstration)

$ ls -l | more

$ ls -l | grep ".sh"

$ ps aux | awk '{if($1=="zhuofei") print $0}' | more

$ qstat -u "*" | awk '{print $4}' | sort | less

$ qstat -u "*" | grep ‘qw' | awk 'BEGIN{n=0} {n++} END{printf "%d jobs waiting on queue\n", n}'

$ pwd ; ls

$ cd .. ; ls

$ mkdir ./subdir ; cd ./subdir ; touch file1 ; ls

Shell Scripting Syntax Basics – Redirection
 Standard output redirection: > and >>

 Standard error redirection: 2>, 2>&1 and >&

 Standard input redirection: <

 General usage:

$ ls > outfile # std output of a command is written to outfile

$ ls >> outfile # std output of a command is appended to outfile

$./myprog > outfile # std output of a program is written to outfile

$./myprog > outfile 2> errorfile # std output and error  separate files

$./myprog > outfile 2>&1 # std output and error  single file

$./myprog >& outfile # same as above

$./myprog < infile # std input is from infile

$./myprog < infile > outfile 2>&1

Shell Scripting Syntax Basics – Flow Control
 If-fi Block:

 Example (Demonstration):
echo “Please enter you name:”

read name # read a line from standard input

if [“$name” == “zhuofei”] # true if strings are equal

then

echo “Hello, ${name}!”

else

echo “Hi, ${name}, you are not zhuofei!”

fi

if [test expression] : if test expression is evaluated to be true

then

body1

else

body2

fi

Shell Scripting Syntax Basics – Flow Control
Test Expression Description

-e file True if file exists

-d or -f file True if file exists and is a directory or a regular file

-r or -w or -x file True if file exists and is readable or writable or executable

-s file True if file exists and has a nonzero size

file1 -nt or -ot file2 True if file1 is newer or older than file2

-z or -n string True if the length of string is zero or nonzero

str1 == str2 True if the strings are equal

str1 != str2 True if the strings are not equal

arg1 OP arg2 OP is one of –eq, -ne, -lt, -le, -gt, or -ge. Arg1 and arg2 may be +/- integers

! expr True if expr is false

expr1 -a expr2 True if both expr1 AND expr2 are true

expr1 -o expr2 True if either expr1 OR expr2 is true

File testing

String testing

Logical testing

ARITH testing

Shell Scripting Syntax Basics – Loops
 for Loop: while Loop:

 Example (Demonstration):

for file in *.doc *.docx

do

echo "$file is a MS word file!"

done

for variable in list

do

body

done

while [test expression]

do

body

done

i=1

while [$i -le 10]

do

echo $i

i=`expr $i + 1`

done

Real Shell Scripting Examples
#!/bin/bash

SUBDIR=`pwd`

CTR=1

for sub in ${SUBDIR}/*.sh ; do

if ["`basename ${sub}`" != "`basename $0`"] ; then

qsub -q rcc-30d ${sub} > ${SUBDIR}/outfile_${CTR}

echo "`basename ${sub}` submitted!"

CTR=$(($CTR+1))

fi

done

printf "\nTotally %d jobs submitted!\n\n" $(($CTR-1))

qstat -u `id -un`

Real Shell Scripting Examples
 Example 2: a serial job submission script on zcluster

 Example 3: a MPI job submission script on zcluster (default MPICH2 and PGI compilers)

#!/bin/bash

cd `pwd`

time ./myprog < myin > myout

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_zcluster

#!/bin/bash

cd `pwd`

Export LD_LIBRARY_PATH=/usr/local/mpich2/1.4.1p1/pgi123/lib:${LD_LIBRARY_PATH}

mpirun -np $NSLOTS ./myprog

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_zcluster

Thank You!

