Introduction to HPC Using zcluster at GACRC

Georgia Advanced Computing Resource Center
University of Georgia
Zhuofei Hou, HPC Trainer
zhuofei@uga.edu
Outline

• What is GACRC?
• What is HPC Concept?
• What is zcluser?
• How to work with zcluser?
What is GACRC?

Who Are We?

- **Georgia Advanced Computing Resource Center**
- Collaboration between the Office of Vice President for Research (OVPR) and the Office of the Vice President for Information Technology (OVPIT)
- Guided by a faculty advisory committee (GACRC-AC)

Why Are We Here?

- To provide computing hardware and network infrastructure in support of high-performance computing (HPC) at UGA

Where Are We?

- http://gacrc.uga.edu (Web)
- http://wiki.gacrc.uga.edu (Wiki)
- https://wiki.gacrc.uga.edu/wiki/Getting_Help (Support)
- https://blog.gacrc.uga.edu (Blog)
- http://forums.gacrc.uga.edu (Forums)
What is HPC Concept

- Problem broken into **discrete** instructions
- Instructions executed **sequentially**
- Only **1** instruction executed at any moment on a single processor

- Problem broken into parts can be solved **concurrently**
- Further broken into a series of instructions
- Instructions executed **simultaneously** on multiple processors
- **Synchronization/communication** mechanism employed
What is zcluster?

- Cluster Structural Diagram
- General Information
- Computing Resources
- Disk Storage
What is zcluster – General Information

zcluster is a Linux high performance computing (HPC) cluster:

• Operating System: **64-bit Red Hat Enterprise Linux 5 (RHEL 5)**

• Login Node: `zcluster.rcc.uga.edu`
 Copy Node: `copy.rcc.uga.edu`

• Internodal Communication: **1Gbit** network
 compute nodes ➔ compute nodes
 compute nodes ➔ storage systems
What is zcluster – General Information

• Batch-queueing System:
 - Jobs can be started (submitted), monitored, and controlled
 - Determine which compute node is the best place to run a job
 - Determine appropriate execution priority for a job to run

• On zcluster: Sun Grid Engine (SGE)
What is zcluser – Computing Resources

<table>
<thead>
<tr>
<th>Queue Type</th>
<th>Queue Name</th>
<th>Nodes</th>
<th>Processor</th>
<th>Cores/Node</th>
<th>RAM(GB)/Node</th>
<th>Cores</th>
<th>NVIDIA GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>rcc-30d</td>
<td>45</td>
<td>Intel Xeon</td>
<td>12</td>
<td>48</td>
<td>540</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td></td>
<td>8</td>
<td>16</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rcc-m128-30d</td>
<td>4</td>
<td>Intel Xeon</td>
<td>8</td>
<td>192</td>
<td>32</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>12</td>
<td>256</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rcc-m512-30d</td>
<td>2</td>
<td>AMD Opteron</td>
<td>32</td>
<td>64</td>
<td>192</td>
<td>N/A</td>
</tr>
<tr>
<td>Multi Core</td>
<td>rcc-mc-30d</td>
<td>6</td>
<td>AMD Opteron</td>
<td>48</td>
<td>132</td>
<td>96</td>
<td>N/A</td>
</tr>
<tr>
<td>Interactive</td>
<td>interq</td>
<td>2</td>
<td>AMD Opteron</td>
<td>8</td>
<td>48</td>
<td>16</td>
<td>N/A</td>
</tr>
<tr>
<td>GPU</td>
<td>rcc-sgpu-30d</td>
<td>2</td>
<td>Intel Xeon</td>
<td>12</td>
<td>48</td>
<td>24</td>
<td>4 Tesla S1070 cards</td>
</tr>
<tr>
<td></td>
<td>rcc-mgpu-30d</td>
<td>2</td>
<td></td>
<td>12</td>
<td>48</td>
<td>24</td>
<td>9 Tesla (Fermi) M2070 cards</td>
</tr>
<tr>
<td></td>
<td>rcc-kgpu-30d</td>
<td>4</td>
<td></td>
<td>12</td>
<td>96</td>
<td>24</td>
<td>32 Tesla (Kepler) K20Xm cards</td>
</tr>
</tbody>
</table>

Total peak performance: 23 Tflops
Layer 1: Node
- A standalone “computer in a box”
- Multiple processors, e.g. 2, sharing memory
- Local disk storage, network interface, etc.
- Networked into a cluster

Layer 2: Processor
- A single computing component
- Multicore processor, e.g. 4 cores

Layer 3: Core
- Central processing unit (CPU) reading and executing instructions independently
- Each core is assigned to a software thread
What is zcluster – Disk Storage

- **Home directory** ➜ /*home/groupname/username*
 - Mounted and visible on **all nodes**, with a quota of ~100GB
 - Any directory on */home* has **snapshot** backups
 - Taken once a day, and maintained **4 daily** ones and **1 weekly** one
 - Name: `.snapshot`, e.g., */home/abclab/jsmith/.snapshot*
 - **Completely invisible**, however, user can “cd” into it and then “ls”:

```
$ ls -a
.
  .bash_profile .emacs.d .fontconfig .maple_history MPIs scripts test.sh
  ..
  .bashrc .ENV_file .gnuplot_history .Mathematica openMPs serials .viminfo
  .bash_history downloads exe .history .mc .profile sht .Xauthority
  .bash_logout .emacs .flexlmrc .lesshst .mozilla Pthreads .ssh

$ cd .snapshot ➙ can “cd” into .snapshot
$ .snapshot$ ls ➙ then “ls” to list its contents
```

2015.06.21.00.00.01.weekly 2015.06.27.01.00.01.daily 2015.06.28.01.00.01.daily 2015.06.30.01.00.01.daily
2015.06.26.01.00.01.daily 2015.06.28.00.00.01.weekly 2015.06.29.01.00.01.daily

snapshot is NOT shown here!
What is zcluster – Disk Storage

• **Local scratch**: `/lscratch/username`
 - On local disk of each copy and compute node ➔ node-local storage
 - rcc-30d 8-core nodes: ~18GB, rcc-30d 12-core nodes: ~370GB
 - No snapshot backup
 - Usage Suggestion: *If your job writes results to `/lscratch`, job submission script should move the data to your home or escratch before exit*

• **Ephemeral Scratch**: `/escratch4/zhuofei_Jun_22`
 - Create with `make_escratch` command
 - Visible to all nodes with a quota of 4TB
 - No snapshot backup
 - To be deleted after 37 days
How to work with zcluster?

Before we start:

• To get zcluster to be your best HPC buddy, go to
 GACRC Wiki (http://wiki.gacrc.uga.edu)
 GACRC Web (http://gacrc.uga.edu)

• To get the most effective and qualified support from us, go to
 GACRC Support (https://wiki.gacrc.uga.edu/wiki/Getting_Help)

• To work happily and productively, follow the cluster’s
 Community Code of Conduct (CCOC)
How to work with it?

• Cluster’s CCOC:

On cluster, you are not alone....... Each user is sharing finite resources, e.g., CPU cycles, RAM, disk storage, network bandwidth, with other researchers. *What you do may affect other researchers on the cluster.*

6 rules of thumb to remember:

- NO jobs running on login node
- NO multi-threaded job running with only 1 core requested
- NO large memory job running on regular nodes
- NO long job running on interactive node
- NO small memory job running on large memory nodes
- Use the copy node for file transfer and compression
How to work with zcluster?

- Start with zcluster
- Connect & Login
- Transfer Files
- Softwares Installed
- Run Interactive Jobs
- Run Batch Jobs
 - How to run *serial* jobs
 - How to run *threaded* jobs
 - How to run *MPI* jobs
 - How to check job status, cancel a job, etc.
How to work with zcluster – Start with zcluster

- You need a **User Account**: username@zcluster.rcc.uga.edu
- Procedure: https://wiki.gacrc.uga.edu/wiki/User_Accounts
- A UGA faculty member (**PI**) may register a computing lab: http://help.gacrc.uga.edu/labAcct.php
- The PI of a computing lab may request user accounts for members of his/her computing lab: http://help.gacrc.uga.edu/userAcct.php
- User receives an email notification once the account is ready
- User can use `passwd` command to change initial temporary password
How to work with zcluster – Connect & Login

• Open a connection: Open a terminal and `ssh` to your account

 `ssh zhuofei@zcluster.rcc.uga.edu`

or

 `ssh -X zhuofei@zcluster.rcc.uga.edu`

 (1) `-X` is for X windows application running on the cluster to be forwarded to your local machine
 (2) If using Windows, use SSH client to open connection, get from UGA download software page

• Logging in: You will be prompted for your `zcluster password`

 `zhuofei@zcluster.rcc.uga.edu’s password:`

 (3) On Linux/Mac, when you type in the password, the prompt blinks and does not move

• Logging out: `exit` to leave the system

 `zhuofei@zcluster:~$ exit`
How to work with zcluster – Transfer Files

User’s local 🏷️ SCP 🏷️ Copy node (copy.rcc.uga.edu) of zcluster

• On Linux, Mac or cygwin on Windows: `scp [Source] [Target]`

 E.g. 1: On local machine, do Local ➔ zcluster
  ```
  scp file1 username@copy.rcc.uga.edu:~/subdir
  scp *.dat username@copy.rcc.uga.edu:~/subdir
  ```

 E.g. 2: On local machine, do zcluster ➔ Local
  ```
  scp username@copy.rcc.uga.edu:~/subdir/file ./
  scp username@copy.rcc.uga.edu:~/subdir/\*.*.dat ./
  ```

• On Window: **FileZilla, WinSCP**, etc.
How to work with zcluster – Softwares Installed

- Perl, Python, Java, awk, sed, C/C++ and Fortran compilers
- Matlab, Maple, R
- Many Bioinformatics applications: NCBI Blast+, Velvet, Trinity, TopHat, MrBayes, SoapDeNovo, Samtools, RaxML, etc.
- RCCBatchBlast (RCCBatchBlastPlus) to distribute NCBI Blast (NCBI Blast+) searches to multiple nodes.
- Many Bioinformatics Databases: NCBI Blast, Pfam, uniprot, etc.
- For a complete list of applications installed: https://wiki.gacrc.uga.edu/wiki/Software
How to work with zcluster – Run Interactive Jobs

• To run an interactive job, you need to open a session on an interactive node using qlogin command:

```
zhuofei@zcluster:~$ qlogin
Your job 1391816 ("QLOGIN") has been submitted
waiting for interactive job to be scheduled ...
Your interactive job 1391816 has been successfully scheduled.
...
compute-14-7.local$
```

Now I am on compute-14-7, which is an interactive node

• Current maximum runtime is 12 hours
• When you are done, remember to exit the session!
• Detailed information, like interactive parallel job? Go to: https://wiki.gacrc.uga.edu/wiki/Running Jobs on zcluster
How to work with zcluster – Run Batch Jobs

• Components you need to run a batch job:
 ➢ **Softwares** already installed on zcluster
 ➢ **Job submission script** to run the software,
 ✓ Specifying working directory
 ✓ Exporting environment variables, e.g.,
 - `OMP_NUM_THREADS` (OpenMP threads number)
 - `LD_LIBRARY_PATH` (searching paths for shared libraries)

• Common commands you need:
 ➢ `qsub` with specifying queue name, threads or MPI rank number
 ➢ `qstat`, `qdel`
 ➢ `qacct`, `qsj`, etc.
How to work with zcluster – Run Batch Serial Jobs

• **Step 1**: Create a job submission script *sub.sh* running Samtools:

```bash
#!/bin/bash

# Linux shell (bash)

cd $(HOME)/testdir

# Specify and enter (cd) the working directory

# Run samtools with ‘time’ command to measure amount of time it takes to run the application

time /usr/local/samtools/latest/samtools <command> [options]
```

• **Step 2**: Submit it to the queue:

```
$ qsub -q rcc-30d sub.sh
```

OR

```
$ qsub -q rcc-30d -l mem_total=20g sub.sh
```

- Submit a job to the queue rcc-30d with **16GB RAM/Node**
- Your job submission script

- Submit a job to the queue rcc-30d with **48GB RAM/Node**

How to work with zcluster – Run Batch **Threaded** Jobs

- **Step 1**: Create a job submission script `sub.sh` running bowtie2:
  ```bash
  #!/bin/bash
  cd ${HOME}/testdir
  /usr/local/bowtie2/latest/bin/bowtie2 -p 4 [options]  ➔ Run bowtie2 with 4 threads (-p 4)
  ```

- **Step 2**: Submit it to the queue:
  ```bash
  $ qsub -q rcc-30d -l mem_total=20g -pe thread 4 sub.sh
  ```

 Number of Threads = Number of Cores Requested

 Note: Please use the `rcc-mc-30d` queue, if using threads more than 8!
How to work with zcluster – Run Batch **MPI** Jobs

- **Step 1**: Create a job submission script `sub.sh` running RAxML:

```bash
#!/bin/bash
cd ${HOME}/testdir
export MPIRUN=/usr/local/mpich2/1.4.1p1/gcc 4.5.3/bin/mpirun
$MPIRUN -np $NSLOTS /usr/local/raxml/latest/raxmlHPC-MPI-SSE3 [options]  ➔ Run RAxML with 20 MPI processes (-np $NSLOTS)
```

- **Step 2**: Submit it to the queue:

```bash
$qsub -q rcc-30d -pe mpi 20 sub.sh
```

20 cores requested,
$NSLOTS will be assigned to 20 automatically, before
the job submission script is interpreted
How to work with zcluster – Check and Cancel Jobs

- To check the status of all queued and running jobs: `qstat`

 - `qstat` shows your job in the pool
 - `qstat -u "*"` shows all the jobs in the pool
 - `qstat -j 12345` shows detailed information, e.g., `maxvmem`, about the job with JOBID 12345
 - `qstat -g t` lists all nodes used by your jobs

- To cancel a queued or running job: `qdel`

 - `qdel -u zhuofei` deletes all your jobs
 - `qdel 12345` deletes your job with JOBID 12345

- To list detailed information about a job: `qsj`, `qacct`

 - `qsj 12345` shows information, e.g., `maxvmem`, about the RUNNING job with JOBID 12345
 - `qacct -j 12345` shows information, e.g., `maxvmem`, about the ENDED job with JOBID 12345
Thank You for Your Attention!
From Yecheng:
• Software support issue:
 What kind of software support we are responsible for the users? or definition of our software support

From Shan-Ho:
• rcc-30d: For MPI, max 75 cores total to be requested
• rcc-mc-30d: max 32 threads to be allowed
• rcc-m128-30d: max 5 cores to be requested
 rcc-m512-30d: max 8 cores to be requested