

Introduction to HPC Using the New Cluster at GACRC

Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu

Outline

- What is GACRC?
- What is the new cluster at GACRC?
- How does it operate?
- How to work with it?

What is GACRC?

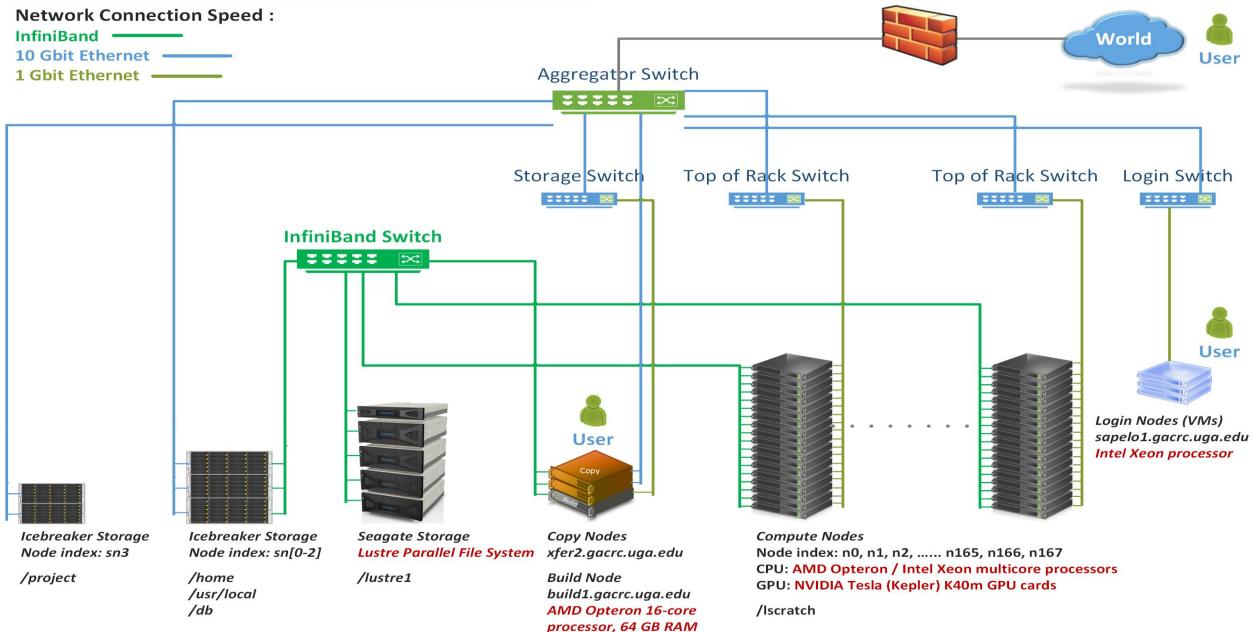
Who Are We?

- Georgia Advanced Computing Resource Center
- Collaboration between the Office of Vice President for Research (OVPR) and the Office of the Vice President for Information Technology (OVPIT)
- Guided by a faculty advisory committee (GACRC-AC)

Why Are We Here?

To provide computing hardware and network infrastructure in support of highperformance computing (HPC) at UGA

Where Are We?

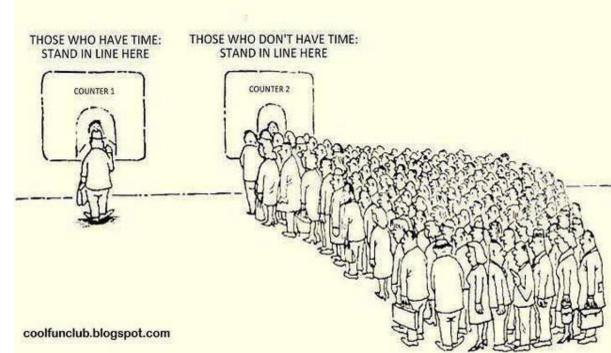

- <u>http://gacrc.uga.edu</u> (Web) <u>http://wiki.gacrc.uga.edu</u> (Wiki)
- <u>https://wiki.gacrc.uga.edu/wiki/Getting_Help</u> (Support)
- <u>https://blog.gacrc.uga.edu</u> (Blog) <u>http://forums.gacrc.uga.edu</u> (Forums)

What is the new cluster at GACRC?

- Cluster Structural Diagram
- General Information
- Computing Resources

The New GACRC Linux HPC Cluster Structural Diagram

What is the new cluster – General Information


The new cluster is a Linux high performance computing (HPC) cluster:

- 64-bit CentOS 6.5 operating system
- Login node has Intel Xeon processors
- InfiniBand network provides internodal communication:
 compute nodes <i>compute nodes
 compute nodes <i>storage systems, e.g., /home and /scratch

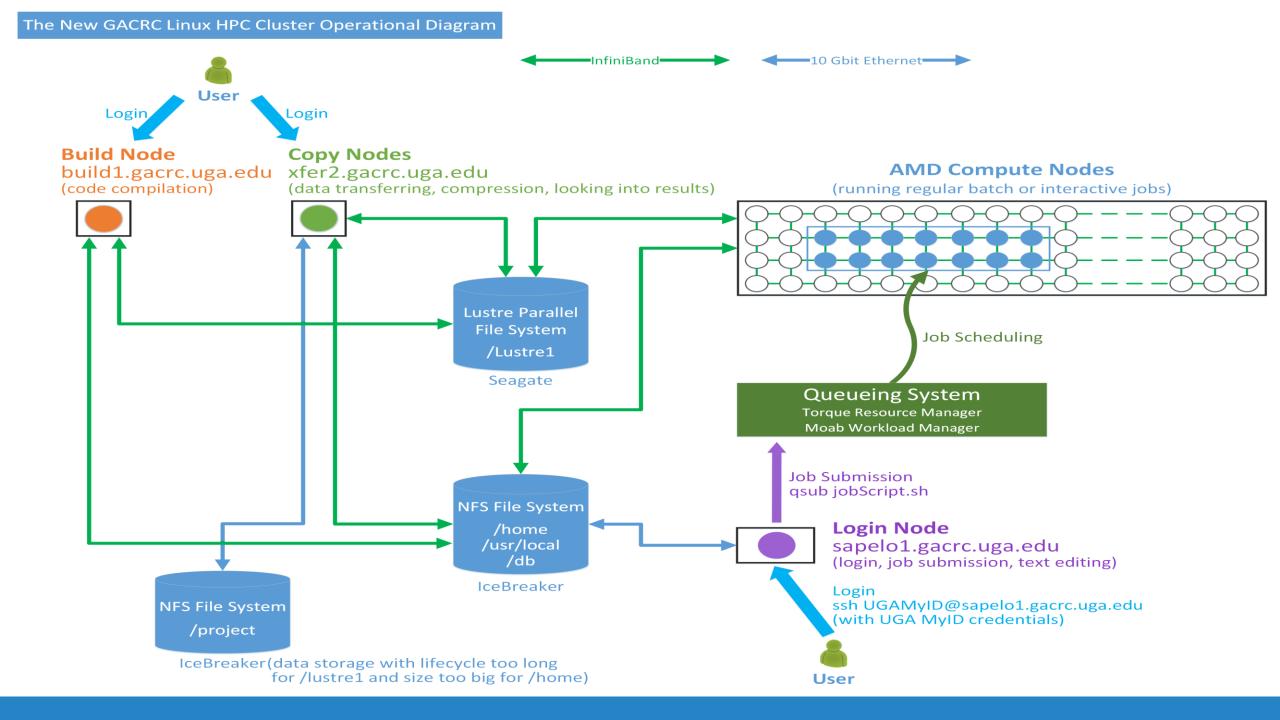
What is the new cluster – General Information

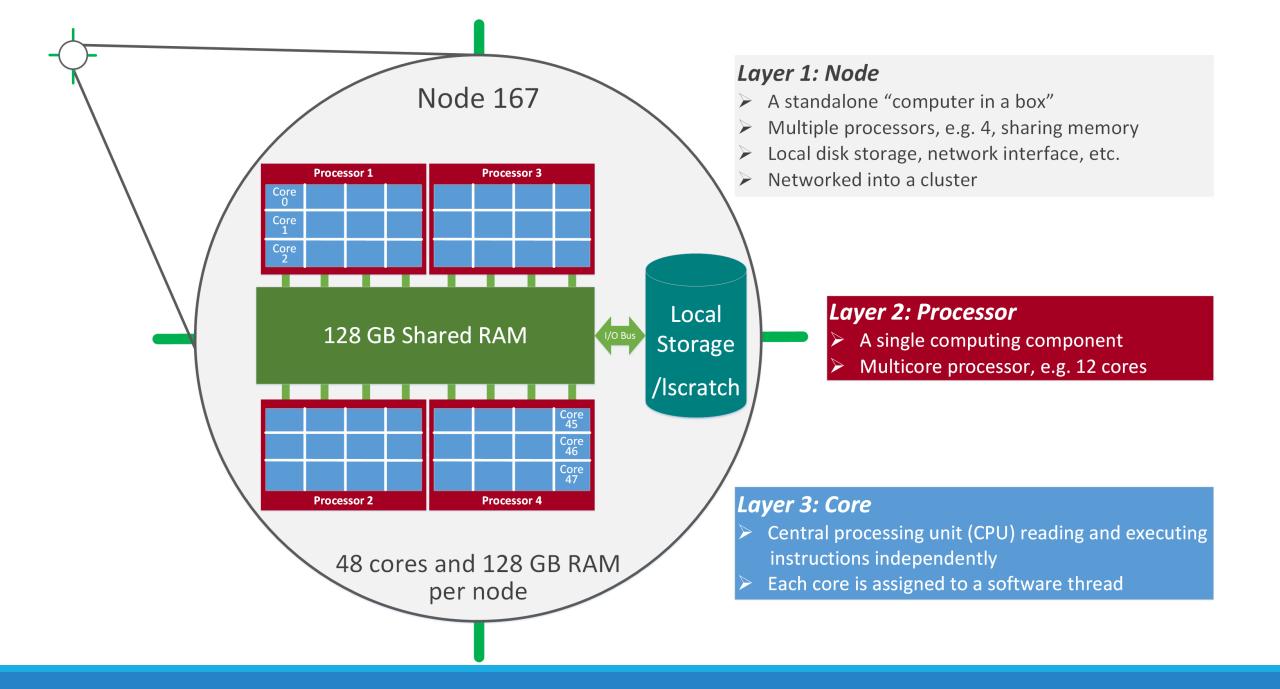
- Batch-queueing System:
 - Jobs can be started (submitted), monitored, and controlled
 - Determine which compute node is the best place to run a job
 - Determine appropriate execution priority for a job to run
- On new cluster:

Torque Resource Manager Moab Workload Manager

What is the new cluster – Computing Resources

Queue	Node Type	Total Nodes	Processor	Cores / Node	RAM (GB) / Node	GPU	GPU Cards / Node	InfiniBand
	AMD	120	AMD Opteron	48	128	N/A	N/A	Yes
batch	HIGHMEM	3	AMD Opteron	48	512 (2) 1024 (1)	N/A	N/A	Yes
	GPU	2	Intel Xeon	16	128	NVIDIA K40m	8	Yes


Peak Performance per Node: 500 Gflops/Node


Home directory : 100 GB Scratch directory on /lustre1 : NO quota limit, auto-moved to /project, if no modification in 30 days!

How does it operate?

Next Page

How to work with it?

Before we start:

- To get the new cluster to be your best HPC buddy, go to GACRC Wiki (<u>http://wiki.gacrc.uga.edu</u>) GACRC Web (<u>http://gacrc.uga.edu</u>)
- To get the most effective and qualified support from us, go to GACRC Support (<u>https://wiki.gacrc.uga.edu/wiki/Getting_Help</u>)
- To work happily and productively, follow the new cluster's Community Code of Conduct (CCOC)

How to work with it?

• Cluster's CCOC:

On cluster, you are not alone...... Each user is sharing finite resources, e.g., CPU cycles, RAM, disk storage, network bandwidth, with other researchers. *What you do may affect other researchers on the cluster*.

- 6 rules of thumb to remember:
 - NO jobs running on login node
 - > NO multi-threaded job running with only 1 core requested
 - > NO large memory job running on regular nodes
 - > NO long job running on interactive node
 - > NO small memory job running on large memory nodes
 - Use the copy node for file transfer and compression

How to work with it?

- Start with the Cluster
- Connect & Login
- Software Packages
- Run Jobs
 - How to submit a job
 - How to make a job submission script
 - How to check job status, cancel a job, etc.

How to work with it – Start with the Cluster

- You need a User Account: <u>UGAMyID@sapelo1.gacrc.uga.edu</u>
 To create your account correctly, you must provide us with your official
 UGA MyID, not a UGA MyID alias!
- To get a user account, follow 4 steps:
 - 1. New user training (<u>http://gacrc.uga.edu/help/training/</u>)
 - 2. Tell us your Name, UGA MyID, Lab name and PI's name, via GACRC Support (<u>https://wiki.gacrc.uga.edu/wiki/Getting Help</u>)
 - 3. We send you an invitation letter with instructions to start account initialization
 - 4. With Step 3 finished successfully, we send you a welcome letter with whole package of information about your account created successfully

How to work with it – Connect & Login

• Open a connection: Open a terminal and ssh to your account

ssh zhuofei@sapelo1.gacrc.uga.edu

or

ssh -X zhuofei@sapelo1.gacrc.uga.edu

(¹-X is for X windows application running on the cluster to be forwarded to your local machine ² If using Windows, use SSH client to open connection, get from UGA download software page)

• Logging in: You will be prompted for your UGA MyID password

zhuofei@sapelo1.gacrc.uga.edu's password:

(³ On Linux/Mac, when you type in the password, the prompt blinks and does not move)

• Logging out: exit to leave the system

[zhuofei@75-104 ~]\$ exit

How to work with it – Software Packages

- The cluster uses environment modules to define the various paths for software packages
- Current number of modules installed is ~70 and expanding daily!
- module avail to list all modules available on the cluster:

Core/StdEnv		exabayes/1.4.1		java/jdk1.8.0_20	es	openmpi/1.6.5/gcc/4.4.7		rsem/latest
)ata/cache/moduleT.new		examl/3.0.11		java/latest	(D)	openmpi/1.6.5/pgi/14.9		rsem/1.2.20
ata/cache/moduleT	(D)	expat/latest		lammps/5Sep14		openmpi/1.8.3/gcc/4.4.7		samtools/latest
ata/system.txt		expat/2.0.1	(D)	lammps/16Aug13	(D)	openmpi/1.8.3/gcc/4.7.4		samtools/0.1.19
/3.1.2		fastqc/latest		moab/7.2.10		openmpi/1.8.3/gcc/4.8.0	(D)	samtools/1.1
edops/latest		fastqc/0.11.3	(D)	moab/8.1.1	(D)	openmpi/1.8.3/intel/14.0		samtools/1.2
edops/2.4.14	(D)	gcc/4.7.4		moabs/1.3.2		openmpi/1.8.3/intel/15.0.2	(D)	scripture/latest
bost/1.47.0/gcc447		gcc/4.8.0	(D)	mvapich2/2.0.0/gcc/4.4.7		openmpi/1.8.3/pgi/14.9		scripture/03202015
bost/1.57.0/gcc447		gmap-gsnap/latest		mvapich2/2.0.0/pgi/14.9		orca/3.0.3		sparsehash/latest
post/1.57.0_thread/gcc447		gmap-gsnap/2014-12-24	(D)	ncbiblast+/2.2.29		perl/latest		sparsehash/2.0.2
owtie/latest		gnuplot/5.0.0		netcdf/3.6.3/gcc/4.4.7		perl/5.20.1		tophat/latest
owtie/1.1.1	(D)	gsl/1.16/gcc/4.4.7		netcdf/3.6.3/intel/14.0		per1/5.20.2	(D)	tophat/2.0.13
owtie2/latest		hdf5/1.8.14/gcc/4.4.7		netcdf/3.6.3/intel/15.0.2	(D)	pgi/14.9		trinity/latest
owtie2/2.2.4	(D)	hdf5/1.8.14/intel/15.0.2		netcdf/4.1.3/gcc/4.4.7		pgi/14.10	(D)	trinity/r20140717
uda/5.0.35/gcc/4.4.7		hdf5/1.8.14/pgi/14.9		netcdf/4.1.3/intel/15.0.2		python/2.7.8-ucs4		trinity/2.0.6
uda/6.5.14/gcc/4.4.7		imb/3.2		netcdf/4.1.3/pgi/14.10		python/2.7.8		zlib/gcc447/1.2.8
ufflinks/latest		intel/14.0		netcdf/4.3.2/gcc/4.4.7		python/3.4.3	(D)	
ufflinks/2.2.1	(D)	intel/15.0.2	(D)	netcdf/4.3.2/pgi/14.9		raxm1/8.1.20		

How to work with it – Software Packages

• module list to list which modules currently loaded:

```
[zhuofei@75-104 ~]$ module list
```

```
Currently Loaded Modules:
1) StdEnv 2) moab/7.2.10
```

module load to load the needed modules:

```
[zhuofei@75-104 ~]$ module load ncbiblast+/2.2.29
[zhuofei@75-104 ~]$ module load python/2.7.8
[zhuofei@75-104 ~]$ module load R/3.1.2
[zhuofei@75-104 ~]$ module list
Currently Loaded Modules:
   1) StdEnv 2) moab/7.2.10 3) ncbiblast+/2.2.29 4) python/2.7.8 5) R/3.1.2
```

module unload to remove the specific module:

```
[zhuofei@75-104 ~]$ module unload R/3.1.2
[zhuofei@75-104 ~]$ module list
Currently Loaded Modules:
1) StdEnv 2) moab/7.2.10 3) ncbiblast+/2.2.29 4) python/2.7.8
```


- Components you need to run a job:
 - Software already loaded. If not, used module load
 - Job submission script to run the software, specifying computing resources:
 - ✓ Number of nodes and cores
 - ✓ Amount of memory
 - ✓ Type of nodes
 - ✓ Maximum wallclock time, etc.
- Common commands you need:
 - qsub, qstat, qdel
 - showq, checkjob, etc.

- How to submit a job? *Easy!* [zhuofei@75-104 MPIs]\$ (qsub (sub .sh)
 qsub is to submit a job
 submit a job
 submit a job
 submit a job
 - Amount of memory
 - ✓ Type of nodes
 - ✓ Maximum wallclock time, etc.
- How to make a job submission script? Next Page!

• Example 1: Serial job script *sub.sh* running NCBI Blast +

#PBS -S /bin/bash #PBS -q batch #PBS -N testBlast #PBS -l nodes=1:ppn=1:AMD #PBS -l mem=20g b #PBS -l walltime=48:00:00

cd \$PBS_O_WORKDIR

- → Linux shell (bash)
- ➔ Queue name (batch)
- → Name of the job (testBlast)
- → Number of nodes (1), number of cores/node (1), node type (AMD)
- → Maximum amount of physical memory (20 GB) used by the job
- → Maximum wall clock time (48 hours) for the job, default 6 minutes
- Use the directory from which the job is submitted as the working directory

module load ncbiblast+/2.2.29 \rightarrow Load the module of ncbiblast+, version 2.2.29

time blastn [options]

➔ Run blastn with 'time' command to measure the amount of time it takes to run the application

• Example 2: Threaded job script *sub.sh* running NCBI Blast + with 4 threads

#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=4:AMD
#PBS -l walltime=480:00:00
#PBS -l mem=20gb

#PBS -M jSmith@uga.edu
#PBS -m ae
#PBS -j oe

cd \$PBS_O_WORKDIR

module load ncbiblast+/2.2.29

Number of nodes (1), number of cores/node (4), node type (AMD) <u>Number of threads (4) = Number of cores requested (4)</u>

→ Email to receive a summary of computing resources used by the job

- \rightarrow Receive an email when the job finishes (e)
- Standard error file (testBlast.e1234) will be merged into standard out file (testBlast.o1234)

time blastn -num_threads 4 [options] \rightarrow Run blastn with 4 threads (-num_threads 4)

• Example 3: MPI job script *sub.sh* running RAxML with 50 MPI processes

#PBS -S /bin/bash #PBS -q batch #PBS -N testRAxML #PBS -l nodes=2:ppn=48:AMD #PBS -l walltime=480:00:00 #PBS -l mem=20gb #PBS -j oe

Number of nodes (2), number of cores/node (48), node type (AMD)
 Total cores requested = 2 × 48 = 96
 <u>We suggest, Number of MPI Processes (50) ≤ Number of cores requested (96)</u>

cd \$PBS_O_WORKDIR

module load raxml/8.1.20 → To r module load intel/15.0.2 module load openmpi/1.8.3/intel/15.0.2

➔ To run raxmlHPC-MPI-AVX, MPI version using OpenMPI 1.8.3/Intel 15.0.2

mpirun –np 50 raxmlHPC-MPI-AVX [options]

 \rightarrow Run raxmIHPC-MPI-AVX with 50 MPI processes (-np 50)

• How to check job status? *qstat!*

[jSmith@75-104 MP Job ID	Is]\$ qstat Name	User	Time Use S Queue
481929.pbs 481931.pbs 481934.pbs	testJob1 testJob2 testJob3	jSmith jSmith jSmith jSmith	900:58:0 C batch 04:00:03 R batch 0 Q batch
Job status: R : job is running C : job completed (or cras Q : job is pending, waiting		• •	n this state for 24h

• How to cancel *testJob3* with jobID 481934? **qdel!**

[zhuofei@75-104 MPIs] [jSmith@75-104 MPIs]\$ Job ID		User	Time Use S Queue
481929.pbs 481931.pbs	testJob1 testJob2	jSmith jSmith jSmith	900:58:0 C batch 04:00:03 R batch
481934.pbs	testJob3	jSmith	0 C batch

 How to check resource utilization of a job? *qstat -f*

```
Resource List.mem = 20gb
Shell Path List = /bin/bash
```


 How to check resource utilization of a job? *checkjob*

[zhuofei@75-104 MPIs]\$ Checkjob 501280
job 501280
AName: testJob
State: Idle
Creds: user:zhuofei group:rccstaff class:batch
WallTime: 00:00:00 of 2:00:00
SubmitTime: Thu Aug 20 11:39:13
(Time Queued Total: 00:03:31 Eligible: 00:03:24)
TemplateSets: DEFAULT
Total Requested Tasks: 48
Req[0] TaskCount: 48 Partition: ALL
Opsys: Arch: Features: AMD
Dedicated Resources Per Task: PROCS: 1 MEM: 426M
<pre>NodeSet=ONEOF:FEATURE:AMD:DELL:GPU:HIGHMEM:abbnode:cbwnode:crenode:jcknode:jkcnode: jlmnode:kmdnode:rjsnode:rmcnode:tcgnode:xqwnode .</pre>
SystemJID: 501280
Notification Events: JobStart, JobEnd, JobFail Notification Address: zhuofei@uga.edu
Node Rejection Summary: [CPU: 11][Features: 18][State: 125]

 How to check queue status?
 showq!

[zhuofei@75-104 M	PIs]\$ showq				
active jobs JOBID					
JORID	USERNAME	STATE	PROCS	REMAINING	STARTTIME
481914	brant	Running		20:46:21	Fri Jun 12 11:32:23
481915	brant	Running		20:48:56	Fri Jun 12 11:34:58
481567	becton	Running	288	2:04:15:48	Wed Jun 10 15:01:50
481857		Running	48	9:18:21:41	Fri Jun 12 09:07:43
481859		Running	48	9:18:42:21	Fri Jun 12 09:28:23
108 active jobs		5740 prod	cessors	in use by l	ocal jobs (89.56%)
		22 nodes	active	e (99.18	
eligible jobs					
481821	joykai	Idle	48		Thu Jun 11 13:41:20
481813	joykai	Idle	48		Thu Jun 11 13:41:19
481811	joykai	Idle	48		Thu Jun 11 13:41:19
481825	joykai	Idle	48		Thu Jun 11 13:41:20
50 eligible jobs					
blocked jobs					
JOBID	USERNAME	STATE	PROCS	WCLIMIT	QUEUETIME
0 blocked jobs					
Motol jobo. <u>150</u>					
Total jobs: 158					

Thank You!