

Using Sapelo2 Cluster at the GACRC

New User Training Workshop

Georgia Advanced Computing Resource Center (GACRC)

EITS/University of Georgia

Zhuofei Hou zhuofei@uga.edu

Outline

- GACRC
- Sapelo2 Cluster
 - Diagram
 - Overview
 - Five Directories
 - Four Queues
 - Software Environment
- Job Submission Workflow
- GACRC Wiki and User Support

GACRC

- We are a high-performance-computing (HPC) center at the UGA
- We provide to the UGA research and education community an advanced computing environment:
 - HPC computing and networking infrastructure located at the Boyd Data Center
 - Comprehensive collection of scientific, engineering and business applications
 - Consulting and training services
- http://wiki.gacrc.uga.edu (Wiki)
- https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593 (User Support)
- http://gacrc.uga.edu (Web)

Overview https://wiki.gacrc.uga.edu/wiki/Systems#Sapelo2

Two Nodes:

- 1. Login node for batch job workflow: MyID@sapelo2.gacrc.uga.edu
- 2. Transfer node for data transferring: MyID@xfer.gacrc.uga.edu
- > Five Directories:
 - 1. Home: Login landing spot; 100GB quota; Backed-up
 - 2. Scratch: High-speed storage for temp files needed for current jobs; NO quota; NOT backed-up
 - 3. Work: High-speed storage for <u>input files</u> needed for <u>repeated jobs</u>; per group quota of 500GB and max 100,000 files; NOT backed-up
 - 4. Project: Temporary data parking; per group quota of 1TB; Backed-up (ONLY accessible from Transfer node!)
 - 5. Local Scratch: Local storage on compute node; 200GB quota; NOT backed-up
- Four Queues: batch, highmem_q, gpu_q, groupBuyin_q

Five Directories https://wiki.gacrc.uga.edu/wiki/Disk Storage

Directory	Name	Quota	Accessible from	Intended Use	Backed- up	Important Notes
/home/MyID	Home	100GB	Login Transfer Compute	Static data, e.g. 1. Scripts, source codes 2. Local software	Yes	Not for job data!
/scratch/MyID	Scratch	No Limit		Temporary files needed for current jobs	No	Clean up when job finished! Subject to "30-day purge" policy
/work/abclab	Work	500GB/ 10 ⁵ files		Input files needed for repeated jobs	No	Clean up any old data! Group sharing is possible
/project/abclab	Project	1TB (initial)	Transfer	Temporary data parking	Yes	Group sharing is possible
/lscratch	Local Scratch	200GB	Compute	Jobs with heavy disk I/O	No	Clean up when job exits from node! Data are persistent

Accessing Directories from Nodes

Four Queues https://wiki.gacrc.uga.edu/wiki/Job_Submission_Queues

Queue	Node Feature	Total Nodes	RAM(GB) /Node	Max RAM(GB) /Single-node Job	Cores /Node	Processor Type	GPU Cards /Node	InfiniBand
batch	Intel	30	64	62	28	Intel Xeon		
		42	187	184	32	Intel Xeon (Skylake)		
	AMD	90	128	125	48	AMD Opteron	N/A	Yes
highmem_q	Intel/AMD	4/1	1024	997	28	Intel Xeon		
	AMD/Intel	4/1	512	503	48	AMD Opteron		
gpu_q		2	128	125	16	Intol Voon	8 NVIDIA K40	
	GPU	2	96/80	92/76	12	Intel Xeon	7 NVIDIA K20	
		4	187	184	32	Intel Xeon (Skylake)	1 NVDIA P100	
groupBuyin_q	variable							

Software Environment

- 1. Software names are long and have a EasyBuild toolchain name associated to it
- 2. Complete module name: Name/Version-toolchain, e.g., Python/2.7.14-foss-2016b
- Software names are case-sensitive!
 - module avail: List all available software modules installed on cluster
 - > module load moduleName: Load a module into your working environment
 - > module list: List modules currently loaded
 - > module unload moduleName: Remove a module from working environment
 - > ml spider pattern: Search module names matching a pattern (case-insensitive)

Job Submission Workflow

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2

- 1. Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo: ssh MyID@sapelo2.gacrc.uga.edu
- 2. On Login node, change directory to your <u>scratch</u> space: cd /scratch/MyID
- 3. Create a working subdirectory for a job: mkdir ./workDir
- 4. Change directory to workDir: cd ./workDir
- 5. Transfer data from local computer to <u>workDir</u>: use <u>scp</u> or **SSH File Transfer** to connect Transfer node

 Transfer data on cluster to <u>workDir</u>: log on to Transfer node and then use <u>cp</u> or <u>mv</u>
- 6. Make a job submission script in workDir: nano ./sub.sh
- 7. Submit a job from workDir: qsub ./sub.sh
- 8. Check job status : qstat me or Cancel a job : qdel JobID

Step1: Log on to Login node - Mac/Linux using ssh

https://wiki.gacrc.uga.edu/wiki/Connecting#Connecting_to_Sapelo2

- 1. Open Terminal utility
- 2. Type command line: ssh MyID@sapelo2.gacrc.uga.edu
- 3. You will be prompted for your MyID password
- 4. Sapelo2 access requires ID verification using two-factor authentication with Archpass
 - Duo. If you are not enrolled in Archpass Duo, please refer to
 - https://eits.uga.edu/access_and_security/infosec/tools/archpass_duo/ on how to enroll

Step1 (Cont.) - Mac/Linux using ssh

Use Terminal utility on Mac or Linux!

Step1 (Cont.) - Windows using SSH Secure Utilities

- 1. Download and install SSH Secure Utilities: http://eits.uga.edu/hardware and software/software/
- 2. You can use PuTTY as an alternative: https://www.putty.org/

Step1 (Cont.) - Windows using SSH Secure Utilities

Step1 (Cont.) - Windows using SSH Secure Utilities

Step2: On Login node change directory to global scratch

Once you logged on, your current directory will be your <u>home directory</u>

Use cd command to change your current directory to /scratch/MyID

Use ls command to take a look in /scratch/MyID

```
zhuofei@sapelo2-sub2 zhuofei$ ls
user_test workDir_Alex workDir_bk
```


Step3 - 4: Create and cd to a working subdirectory

• Use mkdir command to make a subdirectory in /scratch/MyID

```
zhuofei@sapelo2-sub2 zhuofei$ mkdir workDir
zhuofei@sapelo2-sub2 zhuofei$ ls
user_test workDir workDir_Alex workDir_bk
```

Use cd command to change your current directory to /scratch/MyID/workDir

Step5: Transfer data from local computer to workDir - Mac/Linux

https://wiki.gacrc.uga.edu/wiki/Transferring Files

- 1. You need to connect to cluster's <u>Transfer node</u> (xfer.gacrc.uga.edu)
- 2. Open Terminal utility on <u>local computer</u> to use scp (-r) [Source] [Target]

```
E.g. 1: working on local computer, from Local → workDir on cluster
```

```
scp ./file zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/
scp -r ./folder/ zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/
```

E.g. 2: working on local computer, from workDir on cluster → Local

```
scp zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/file .
scp -r zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/folder/ .
```


Step5 (Cont.) - Windows using SSH Secure Utilities

- 1. You need to connect to cluster's <u>Transfer node</u> (xfer.gacrc.uga.edu)
- 2. Use SSH File Transfer on <u>local computer</u> (alternative FileZilla or WinSCP)
- 3. Steps 1-10 are the same as steps on page 14-15, except for Host Name in step

Host Name: xfer.gacrc.uga.edu

4. Once you log on, use File Transfer of SSH Secure Utilities, as shown on next page

Step5 (Cont.) - Windows using SSH Secure Utilities

Step5 (Cont.): Transfer data on cluster to workDir

- Log on to Transfer node (xfer.gacrc.uga.edu)
 - ✓ Mac/Linux: ssh MyID@xfer.gacrc.uga.edu (page 12)
 - ✓ Windows: use SSH Secure Utilities (page 19)
- Landing folder: /home/MyID (Home)
- You can transfer data between following directories on cluster using cp or mv:
 - 1. /home/MyID (Home)
 - /scratch/MyID (Scratch)
 - 3. /work/abclab (Work)
 - 4. /project/abclab (Project)
- Most file systems on Transfer are auto-mounted upon the first time full-path access, e.g.,
 cd /project/abclab/

Step6: Make a job submission script in workDir

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#Job submission Scripts

\$ nano sub.sh

nano is a small and friendly text editor on Linux.

Ctrl-x to save file and quit from nano

Step6 (Cont.)

- 1. Sample script on GACRC Wiki Software page:
 - https://wiki.gacrc.uga.edu/wiki/Bowtie2-Sapelo2 #PBS -1 mem=2gb
- 2. Modify it as needed for your computing

To run this example, you need to copy 3 files into your current working dir:

- cp /usr/local/training/sub.sh .
- cp /usr/local/training/myreads.fq .
- cp -r /usr/local/training/index .

Step7: Submit a job from workDir using qsub

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to submit a job to the batch queue

```
zhuofei@sapelo2-sub2 workDir$ pwd
/scratch/zhuofei/workDir
zhuofei@sapelo2-sub2 workDir$ ls
index myreads.fq sub.sh
zhuofei@sapelo2-sub2 workDir$ qsub sub.sh
11943.sapelo2
```

sub.sh is job submission script to

- 1. specify computing resources:
- 2. load software using module load
- 3. run any Linux commands you want to run
- 4. run the software

Step8: Check job status using qstat_me

https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

```
zhuofei@sapelo2-sub2 workDir$ qstat me
                                            Time Use S Queue
Job ID
                  Name
                                  User
11943.sapelo2
                  bowtie2 test
                                  zhuofei
                                            00:06:40 C batch
11944.sapelo2
                  bowtie2 test
                                  zhuofei
                                           00:05:17 R batch
                  bowtie2 test
11946.sapelo2
                                           00:12:51 R batch
                                  zhuofei
11947.sapelo2
                  bowtie2 test
                                  zhuofei
                                                   0 R batch
11948.sapelo2
                  bowtie2 test
                                  zhuofei
                                                   0 0 batch
```

R: job is running

C: job completed (or canceled or crashed) and is not longer running. Jobs stay in this state for 24 hour

Q: job is pending, waiting for resources to become available

Note: "Time Use" is the CPU time, instead of the wall-clock time of your job staying on cluster!

Step8 (Cont.): Cancel job using qdel

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to delete a running or pending job

```
zhuofei@sapelo2-sub2 workDir$ qdel 11947
zhuofei@sapelo2-sub2 workDir$ qstat me
                   Name
Job ID
                                   User
                                                Time Use S Queue
11943.sapelo2
                   bowtie2 test
                                    zhuofei
                                                00:06:40 C batch
                                                00:05:17 R batch
11944.sapelo2
                   bowtie2 test
                                    zhuofei
                                                00:12:51 R batch
11946.sapelo2
                   bowtie2 test
                                    zhuofei
                                                00:00:09 C batch
11947.sapelo2
                   bowtie2 test
                                    zhuofei
11948.sapelo2
                   bowtie2 test
                                    zhuofei
                                                       0 Q batch
```

job 11947 status is changed from R to C C status will stay in list for ~24 hour

Step8 (Cont.): Check Job using qstat -n -u MyID

https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

zhuofei@sapelo2-sub2 workDir\$ qstat -n -u zhuofei									
dispatch.ecompute:									
Job ID	Username	Queue	Jobname	SessID	NDS	TSK	Req'd Memory	Req'd Time S	Elap Time
12175.sapelo2 n238/0 ← jo			bowtie2_test /CPU0	132442	1	1	2gb	01:00:00 R	00:23:44
12176.sapelo2 n237/0	zhuofei	batch	bowtie2_test	67226	1	1	2gb	01:00:00 R	00:20:44
12177.sapelo2	zhuofei	batch	bowtie2_test	119643	1	1	2gb	01:00:00 R	00:05:44
Note: "Elap Time" is the wall-clock time, instead of the CPU time, which gstat me can give you!									

Step8 (Cont.): Check all Jobs on cluster using qstat

https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

```
zhuofei@sapelo2-sub2 workDir$ qstat
Job ID
                                                 Time Use S Queue
                      Name
                                    User
11267.sapelo2
                    L80-500 jx57780 164:32:5 R batch
11269.sapelo2
             L80-502 jx57780
                                                 164:55:5 C batch
                    L80-503 jx57780
11270.sapelo2
                                                  165:38:5 C batch
11607.sapelo2
                                     qd98309
                                                  3414:46: R bergman q
                      canu
                ... 3 constoptTS sm39091
11726.sapelo2
                                                  3157:30: R wheeler q
                    ... 2 constoptTS sm39091
11729.sapelo2
                                                  2731:29: R wheeler q
11790.sapelo2
                      sp2 run19b dye castelao
                                                  4412:52: C batch
11804.sapelo2
                      ...e-4 Nnoise=64 cotter 98:26:20 R batch
                                              98:14:22 R batch
11806.sapelo2
                      ...e-4 Nnoise=64 cotter
11987.sapelo2
                       ... th W18-T5-L4 qbcq
                                                  08:02:40 C batch
11989.sapelo2
                      matlabjob
                                     zhyw86
                                                        0 C batch
11990.sapelo2
                       ... 1 constoptTS sm39091
                                                  445:42:1 R wheeler q
                      ... 1 constoptTS sm39091
11991.sapelo2
                                                 444:51:4 R wheeler q
                      ... cl W18-T3-D1 qbcq
11992.sapelo2
                                                  03:04:21 C batch
Note: qstat command will give you a long list of all jobs from all users on cluster!
```


Workflow Diagram

GACRC Wiki http://wiki.gacrc.uga.edu

Running Jobs: https://wiki.gacrc.uga.edu/wiki/Running_Jobs on Sapelo2

Monitoring Jobs: https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

Job Submission Queue: https://wiki.gacrc.uga.edu/wiki/Job Submission Queues

Software: https://wiki.gacrc.uga.edu/wiki/Software

Transfer File: https://wiki.gacrc.uga.edu/wiki/Transferring-Files

Linux Command: https://wiki.gacrc.uga.edu/wiki/Command_List

Training: https://wiki.gacrc.uga.edu/wiki/Training

User Account Request: https://wiki.gacrc.uga.edu/wiki/User Accounts

GACRC Support

https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593

Job Troubleshooting:

Please tell us details of your question or problem, including but not limited to:

- ✓ Your user name
- ✓ Your job ID
- ✓ Your working directory
- ✓ The queue name and command you used to submit the job.

Software Installation:

- ✓ Specific name and version of the software
- ✓ Download website
- ✓ Supporting package information if have

Please note to make sure the correctness of datasets being used by your jobs!

GACRC Service Catalog

Georgia Advanced Computing Resource Center (GACRC) service catalog

Services (11)

Account Creation

For a research group's PI to request user accounts for group members on the GACRC computing systems.

Class Account Creation

For an instructor to request user accounts for students attending a course that will need to use GACRC computing systems.

Class Account Modification

For instructors to request changes to be made in previously requested class account.

Computing Lab Modification/Deletion

General Internal

General Support

Report issues and request help with GACRC systems, except for software installation requests and account/lab creation requests.

Lab Creation

For a research group's PI to register a computing lab on the GACRC computing systems

Modify/Delete Account

For PIs to request changes in or deletion of user accounts on GACRC computing systems.

Software Installation/Update

Request software and common application database (e.g. NCBI blast databases) installation and upgrade.

My Recent Requests

home directory is not fully provisioned: ss57215

GACRC Sapelo2 New Lab/Use Account Request 2018-11-14_preTraining

GACRC Sapelo2 Cluster New Lab/Use Account Request 2018-11-05_preTraining

provision 5 user accounts for ugahelpdesk group

GACRC Sapelo2 New Lab/Use Account Request 2018-10-22_preTraining

View All Recent Requests >

Popular Services

EITS Help Desk Support Request

MyID Account Request

Change Request

02 Restricted VPN Access

Terry Classroom & Meeting Room Support

View All Popular Services >

My Recently Visited Services

Modify/Delete Account

Class Account Creation

This site is operated by Enterprise Information Technology Services (EITS) at the University of Georgia.

Privacy | Accessibility | Website Feedback

https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalogSearch

Appendix: Examples of Batch Serial/Threaded/MPI Job Scripts

https://wiki.gacrc.uga.edu/wiki/Sample Scripts

- Components you need to run a job:
 - Software already installed (cluster software or the one installed by yourself)
 - Job submission script to
 - 1. specify computing resources:
 - ✓ number of nodes and cores
 - ✓ amount of memory
 - ✓ maximum wallclock time
 - 2. load software using ml load (for cluster software)
 - 3. run any Linux commands you want to run, e.g., pwd, mkdir, cd, echo, etc.
 - 4. run the software
 - > Input data for analysis, if have
- Common queueing commands you need:
 - qsub, qstat_me, qstat, qdel
 - gstat -f, showq

Example 1: Serial job script running NCBI Blast+ using 1 CPU

#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=1
#PBS -l mem=20gb
#PBS -l walltime=48:00:00

cd \$PBS_O_WORKDIR

- → Linux default shell (bash)
- → Queue name (batch)
- → Job name (testBlast)
- → Number of nodes (1), number of cores (1), node feature is NOT needed!
- → Maximum amount of RAM memory (20 GB) is enforced by the cluster!
- → Maximum wall-clock time (48 hours) for the job, default 6 minutes
- → Compute node will use the directory from which the job is submitted as the working directory, i.e., /lustre1/MyID/workDir

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

→ Load the module of ncbiblast+, version 2.6.0

time blastn [options] ...

→ Run blastn with 'time' command to measure the amount of time it takes to run the application

https://wiki.gacrc.uga.edu/wiki/BLAST%2B-Sapelo2

*Example 2: Threaded job script running NCBI Blast+ using 4 CPUS

```
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=4
                                      → Number of nodes (1), number of cores (4)
                                          Number of cores requested (4) = Number of threads (4)
#PBS -I mem=20gb
#PBS -l walltime=480:00:00
#PBS -M jsmith@uga.edu
                                      → Email address to receive a notification for computing resources
                                      → Send email notification when job aborts (a) or terminates (e)
#PBS -m ae
                                      → Standard error file (testBlast.e12345) will be merged into standard
#PBS -i oe
                                         out file (testBlast.o12345)
cd $PBS_O_WORKDIR
ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14
time blastn -num_threads 4 [options] ...
                                           → Run blastn with 4 threads (-num_threads 4)
```


*Example 3: MPI job script running RAxML using 2 full nodes

```
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testRAxML
#PBS -l nodes=2:ppn=28
                                → Number of nodes (2), number of cores (28)
#PBS -l walltime=120:00:00
                                   Total cores requested = 2 \times 28 = 56
                                   We suggest, Number of MPI Processes (50) ≤ Number of cores requested (56)
#PBS -I mem=100gb
cd $PBS O WORKDIR
ml load RAxML/8.2.11-foss-2016b-mpi-avx
                                              To run raxmlHPC-MPI-AVX, MPI version using OpenMPI
mpirun –np 50 raxmlHPC-MPI-AVX [options]
                                              → Run raxmlHPC-MPI-AVX with 50 MPI processes (-np 50),
                                                 default 56
```


Guideline Tips

- Do NOT use Login node to run CPU/memory intensive tasks directly → submit job to queue!
- Do NOT use Login Node to transfer data between your local computer and cluster → use Transfer node!
- Do NOT use Home for storing job data → use /scratch/MyID
- Do NOT park data in Scratch or Local Scratch → clean up when job finished or exits from node
- Do NOT park data permanently in Project → download data to your local drive
- NO large memory job running on batch queue
 use highmem_q
- NO small memory job running on highmem_q queue → use batch
- In general, number of threads you want to run with a parallel job = number of cores requested

Practical Tips

Each directory should not have too many files inside! A rule of thumb would
be to try to keep no more than a few tens of thousands of files (<10000 would
be even better) in any single directory which is accessed frequently

All files are in ONE single dir!

Files are organized in subdirs!

Thank You!

Telephone Support

EITS Help Desk: 706-542-3106

Monday – Thursday: 7:30 a.m. – 7:30 p.m.

Friday: 7:30 a.m. – 6 p.m.

Saturday – Sunday: 1 p.m. – 7 p.m.

Georgia Advanced Computing Resource Center

101-108 Computing Services building

University of Georgia

Athens, GA 30602

https://gacrc.uga.edu/