Using Sapelo2 Cluster at the GACRC

New User Training Workshop

Georgia Advanced Computing Resource Center (GACRC)
EITS/University of Georgia
Zhuofei Hou zhuofei@uga.edu
Outline

• GACRC

• Sapelo2 Cluster
 ➢ Diagram
 ➢ Overview
 ➢ Five Directories
 ➢ Four Queues
 ➢ Software Environment

• Job Submission Workflow

• GACRC Wiki and User Support
GACRC

- We are a high-performance-computing (HPC) center at the UGA

- We provide to the UGA research and education community an advanced computing environment:
 - HPC computing and networking infrastructure located at the Boyd Data Center
 - Comprehensive collection of scientific, engineering and business applications
 - Consulting and training services

- http://wiki.gacrc.uga.edu (Wiki)

- http://gacrc.uga.edu (Web)
Please Note:
You need to connect to the UGA VPN when accessing from outside of the UGA main campus.

1. ssh with MyID and password
2. Verify with Archpass Duo two-factor authentication

- Node: Computer for a specific function on cluster, e.g., login node
- Queue: Collection of compute nodes for specific computing need
- Cluster: Nodes + Drives, all connected by network
Two Nodes:

1. Login node for batch job workflow: MyID@sapelo2.gacrc.uga.edu
2. Transfer node for data transferring: MyID@xfer.gacrc.uga.edu

Five Directories:

1. Home: Login landing spot; 100GB quota; Backed-up
2. Scratch: High-speed storage for temp files needed for current jobs; NO quota; NOT backed-up
3. Work: High-speed storage for input files needed for repeated jobs; per group quota of 500GB and max 100,000 files; NOT backed-up
4. Project: Temporary data parking; per group quota of 1TB; Backed-up (ONLY accessible from Transfer node!)
5. Local Scratch: Local storage on compute node; 200GB quota; NOT backed-up

Four Queues: batch, highmem_q, gpu_q, groupBuyin_q
Five Directories

https://wiki.gacrc.uga.edu/wiki/Disk_Storage

<table>
<thead>
<tr>
<th>Directory</th>
<th>Name</th>
<th>Quota</th>
<th>Accessible from</th>
<th>Intended Use</th>
<th>Backed-up</th>
<th>Important Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>/home/MyID</td>
<td>Home</td>
<td>100GB</td>
<td>Login</td>
<td>Static data, e.g. 1. Scripts, source codes 2. Local software</td>
<td>Yes</td>
<td>Not for job data!</td>
</tr>
<tr>
<td>/scratch/MyID</td>
<td>Scratch</td>
<td>No Limit</td>
<td>Transfer, Compute</td>
<td>Temporary files needed for current jobs</td>
<td>No</td>
<td>Clean up when job finished! Subject to “30-day purge” policy</td>
</tr>
<tr>
<td>/work/abclab</td>
<td>Work</td>
<td>500GB/ 10^5 files</td>
<td>Transfer</td>
<td>Input files needed for repeated jobs</td>
<td>No</td>
<td>Clean up any old data! Group sharing is possible</td>
</tr>
<tr>
<td>/project/abclab</td>
<td>Project</td>
<td>1TB (initial)</td>
<td>Transfer</td>
<td>Temporary data parking</td>
<td>Yes</td>
<td>Group sharing is possible</td>
</tr>
<tr>
<td>/scratch</td>
<td>Local Scratch</td>
<td>200GB</td>
<td>Compute</td>
<td>Jobs with heavy disk I/O</td>
<td>No</td>
<td>Clean up when job exits from node! Data are persistent</td>
</tr>
</tbody>
</table>
Accessing Directories from Nodes

```
Login

Interactive
/home/MyID
/scratch/MyID
/work/abclab

Transfer
/project/abclab
non-GACRC storage

Duo Authentication

User
log on using ssh

Duo Authentication

Please Note:
Local scratch is only accessible from each individual compute node, so it is not shown here.
```
Four Queues https://wiki.gacrc.uga.edu/wiki/Job_Submission_ Queues

<table>
<thead>
<tr>
<th>Queue</th>
<th>Node Feature</th>
<th>Total Nodes</th>
<th>RAM(GB) /Node</th>
<th>Max RAM(GB) /Single-node Job</th>
<th>Cores /Node</th>
<th>Processor Type</th>
<th>GPU Cards /Node</th>
<th>InfiniBand</th>
</tr>
</thead>
<tbody>
<tr>
<td>batch</td>
<td>Intel</td>
<td>30</td>
<td>64</td>
<td>62</td>
<td>28</td>
<td>Intel Xeon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>187</td>
<td>184</td>
<td>32</td>
<td>Intel Xeon (Skylake)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMD</td>
<td>90</td>
<td>128</td>
<td>125</td>
<td>48</td>
<td>AMD Opteron</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Intel/AMD</td>
<td>4/1</td>
<td>1024</td>
<td>997</td>
<td>28</td>
<td>Intel Xeon</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>highmem_q</td>
<td>AMD/Intel</td>
<td>4/1</td>
<td>512</td>
<td>503</td>
<td>48</td>
<td>AMD Opteron</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPU</td>
<td>2</td>
<td>128</td>
<td>125</td>
<td>16</td>
<td>Intel Xeon</td>
<td>8 NVIDIA K40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>96/80</td>
<td>92/76</td>
<td>12</td>
<td>Intel Xeon</td>
<td>7 NVIDIA K20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>187</td>
<td>184</td>
<td>32</td>
<td>Intel Xeon (Skylake)</td>
<td>1 NVIDIA P100</td>
<td></td>
</tr>
<tr>
<td>groupBuyin_q</td>
<td></td>
<td>variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Environment

1. Software names are long and have a EasyBuild toolchain name associated to it
2. Complete module name: Name/Version-toolchain, e.g., Python/2.7.14-foss-2016b
3. Software names are case-sensitive!

- module avail: List all available software modules installed on cluster
- module load moduleName: Load a module into your working environment
- module list: List modules currently loaded
- module unload moduleName: Remove a module from working environment
- ml spider pattern: Search module names matching a pattern (case-insensitive)
1. Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo:
 `ssh MyID@sapelo2.gacrc.uga.edu`

2. On Login node, change directory to your `scratch` space: `cd /scratch/MyID`

3. Create a working subdirectory for a job: `mkdir ./workDir`

4. Change directory to `workDir`: `cd ./workDir`

5. Transfer data from local computer to `workDir`: use `scp` or `SSH File Transfer` to connect Transfer node
 Transfer data on cluster to `workDir`: log on to Transfer node and then use `cp` or `mv`

6. Make a job submission script in `workDir`: `nano ./sub.sh`

7. Submit a job from `workDir`: `qsub ./sub.sh`

8. Check job status: `qstat` or Cancel a job: `qdel JobID`
Step 1: Log on to Login node - Mac/Linux using ssh

https://wiki.gacrc.uga.edu/wiki/Connecting#Connecting_to_Sapelo2

1. Open **Terminal** utility

2. Type command line: `ssh MyID@sapelo2.gacrc.uga.edu`

3. You will be prompted for your **MyID password**

4. Sapelo2 access requires ID verification using two-factor authentication with Archpass Duo. If you are not enrolled in Archpass Duo, please refer to

 https://eits.uga.edu/access_and_security/infosec/tools/archpass_duo/ on how to enroll
Use Terminal utility on Mac or Linux!

Log on
Input MyID password!
Select Duo login option!
I am on sapelo2-sub2!
Step 1 (Cont.) - Windows using SSH Secure Utilities

1. Download and install SSH Secure Utilities: http://eits.uga.edu/hardware_and_software/software/

2. You can use PuTTY as an alternative: https://www.putty.org/
Step 1 (Cont.) - Windows using SSH Secure Utilities

Please Note:
Authentication Method needs to be set as Keyboard Interactive in default <profile Setting>
Step 1 (Cont.) - Windows using SSH Secure Utilities

8. You will be prompted for UGA MyID password after Step 7

9. Select Duo login option!
Step2: On Login node change directory to global scratch

- Once you logged on, your current directory will be your **home directory**

  ```
  zhuofei@sapelo2-sub2 ~$ pwd
  /home/zhuofei
  ```

 ➡️ this is my home directory!

- Use `cd` command to change your current directory to `/scratch/MyID`

  ```
  zhuofei@sapelo2-sub2 ~$ cd /scratch/zhuofei
  zhuofei@sapelo2-sub2 zhuofei$ pwd
  /scratch/zhuofei
  ```

 ➡️ this is my scratch space!

- Use `ls` command to take a look in `/scratch/MyID`

  ```
  zhuofei@sapelo2-sub2 zhuofei$ ls
  user_test  workDir_Alex  workDir bk
  ```
Step3 - 4: Create and cd to a working subdirectory

- Use `mkdir` command to make a subdirectory in /scratch/MyID

  ```
  zhuofei@sapelo2-sub2 zhuofei$ mkdir workDir
  zhuofei@sapelo2-sub2 zhuofei$ ls
  user_test  workDir  workDir_Alex  workDir_bk
  ```

- Use `cd` command to change your current directory to /scratch/MyID/workDir

  ```
  zhuofei@sapelo2-sub2 zhuofei$ cd workDir
  zhuofei@sapelo2-sub2 workDir$ ls
  zhuofei@sapelo2-sub2 workDir$
  ```

 ➡️ it is empty!
Step 5: Transfer data from local computer to workDir - Mac/Linux
https://wiki.gacrc.uga.edu/wiki/Transferring_Files

1. You need to connect to cluster’s Transfer node (xfer.gacrc.uga.edu)
2. Open Terminal utility on local computer to use scp (-r) [Source] [Target]

E.g. 1: working on local computer, from Local ➔ workDir on cluster

```bash
scp ./file zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/
scp -r ./folder/ zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/
```

E.g. 2: working on local computer, from workDir on cluster ➔ Local

```bash
scp zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/file .
scp -r zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/folder/ .
```
Step5 (Cont.) - Windows using SSH Secure Utilities

1. You need to connect to cluster’s Transfer node (xfer.gacrc.uga.edu)

2. Use SSH File Transfer on local computer (alternative FileZilla or WinSCP)

3. Steps 1-10 are the same as steps on page 14-15, except for Host Name in step

 Host Name: xfer.gacrc.uga.edu

4. Once you log on, use File Transfer of SSH Secure Utilities, as shown on next page
Step 5 (Cont.) - Windows using SSH Secure Utilities

1. Click to open File Transfer

2. Change local and remote paths

3. Drag data between local computer and remote Transfer node
Step5 (Cont.): Transfer data on cluster to workDir

• Log on to Transfer node (xfer.gacrc.uga.edu)
 ✓ Mac/Linux: ssh MyID@xfer.gacrc.uga.edu (page 12)
 ✓ Windows: use SSH Secure Utilities (page 19)
• Landing folder: /home/MyID (Home)
• You can transfer data between following directories on cluster using cp or mv:
 1. /home/MyID (Home)
 2. /scratch/MyID (Scratch)
 3. /work/abclab (Work)
 4. /project/abclab (Project)
• Most file systems on Transfer are auto-mounted upon the first time full-path access, e.g.,
 cd /project/abclab/
Step 6: Make a job submission script in workDir

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2#Job_submission_Scripts

```
$ nano sub.sh
```

Ctrl-x to save file and quit from nano

nano is a small and friendly text editor on Linux.
Step 6 (Cont.)

1. Sample script on GACRC Wiki Software page: https://wiki.gacrc.uga.edu/wiki/Bowtie2-Sapelo2

2. Modify it as needed for your computing

To run this example, you need to copy 3 files into your current working dir:

```
cp /usr/local/training/sub.sh .
cp /usr/local/training/myreads.fq .
cp -r /usr/local/training/index .
```

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N bowtie2_test
#PBS -l nodes=1:ppn=1
#PBS -l mem=2gb
#PBS -l walltime=1:00:00

#PBS -M zhuoifei@uga.edu
#PBS -m ae

cd $PBS_O_WORKDIR

module load Bowtie2/2.3.3-foss-2016b

time bowtie2 -p 1 -x ./index/lambda_virus -U ./myreads.fq -S output.sam
```
Step 7: Submit a job from workDir using qsub

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2#How_to_submit_a_job_to_the_batch_queue

```
zhuofei@sapelo2-sub2 workDir$ pwd
/scratch/zhuofei/workDir
zhuofei@sapelo2-sub2 workDir$ ls
index  myreads.fq  sub.sh
zhuofei@sapelo2-sub2 workDir$ qsub sub.sh
11943.sapelo2
```

sub.sh is job submission script to

1. Specify computing resources:
2. Load software using `module load`
3. Run any Linux commands you want to run
4. Run the software
Step 8: Check job status using `qstat_me`

https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

```
zhuofei@sapelo2-sub2 workDir$ qstat_me
```

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time Use</th>
<th>S</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11943.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:06:40</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11944.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:05:17</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11946.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:12:51</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11947.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>0</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11948.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>0</td>
<td>Q</td>
<td>batch</td>
</tr>
</tbody>
</table>

R: job is running
C: job completed (or canceled or crashed) and is not longer running. Jobs stay in this state for 24 hours.
Q: job is pending, waiting for resources to become available.

Note: “Time Use” is the CPU time, instead of the wall-clock time of your job staying on cluster!
Step8 (Cont.): Cancel job using qdel

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2#How_to_delete_a_running_or_pending_job

```
zhuofei@sapelo2-sub2 workDir$ qdel 11947
```

```
zhuofei@sapelo2-sub2 workDir$ qstat_me
```

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time Use</th>
<th>S</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11943.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:06:40</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11944.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:05:17</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11946.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:12:51</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>11947.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:00:09</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>11948.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td></td>
<td>Q</td>
<td>batch</td>
</tr>
</tbody>
</table>

Job 11947 status is changed from R to C

C status will stay in list for ~24 hour
Step8 (Cont.): Check Job using `qstat -n -u MyID`

https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

```
 dispatch.ecompute:

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Username</th>
<th>Queue</th>
<th>Jobname</th>
<th>SessID</th>
<th>NDS</th>
<th>TSK</th>
<th>Req'd Memory</th>
<th>Req'd Time</th>
<th>Elap Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>12175.sapelo2 zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>132442</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00</td>
<td>R</td>
<td>00:23:44</td>
</tr>
<tr>
<td>n238/0</td>
<td>job is running on node238/CPU0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12176.sapelo2 zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>67226</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00</td>
<td>R</td>
<td>00:20:44</td>
</tr>
<tr>
<td>12177.sapelo2 zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>119643</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00</td>
<td>R</td>
<td>00:05:44</td>
</tr>
</tbody>
</table>
```

Note: “Elap Time” is the wall-clock time, instead of the CPU time, which `qstat_me` can give you!
Step8 (Cont.): Check all Jobs on cluster using qstat

https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

```
zhuofei@sapelo2-sub2 workDir$ qstat
Job ID                    Name             User            Time Use S Queue
----------------------------------------------------------------------------
11267.sapelo2             L80-500          jx57780         164:32:5 R batch
11269.sapelo2             L80-502          jx57780         164:55:5 C batch
11270.sapelo2             L80-503          jx57780         165:38:5 C batch
11607.sapelo2             canu             gd98309         3414:46: R bergman_q
11726.sapelo2             ..._3_constoptTS sm39091         3157:30: R wheeler_q
11729.sapelo2             ..._2_constoptTS sm39091         2731:29: R wheeler_q
11790.sapelo2             sp2_run19b_dye castelao          4412:52: C batch
11804.sapelo2             ...e-4_Nnoise=64 cotter          98:26:20 R batch
11806.sapelo2             ...e-4_Nnoise=64 cotter          98:14:22 R batch
11987.sapelo2             ..._th_W18-T5-L4 qbcg          08:02:40 C batch
11989.sapelo2             matlabjob         zhyw86          0 C batch
11990.sapelo2             ..._1_constoptTS sm39091         445:42:1 R wheeler_q
11991.sapelo2             ..._1_constoptTS sm39091         444:51:4 R wheeler_q
11992.sapelo2             ..._cl_W18-T3-D1 qbcg          03:04:21 C batch
```

Note: qstat command will give you a long list of all jobs from all users on cluster!
1. Linux/Mac user:
 ssh MyID@sapelo2.gacrc.uga.edu

Windows user:

5. Linux/Mac user:
 scp file MyID@xfer.gacrc.uga.edu:/scratch/MyID/workDir

Windows user:

2. cd /scratch/MyID

3. mkdir ./workDir

4. cd ./workDir

6. nano ./sub.sh

#PBS -S /bin/bash
#PBS -q batch
#PBS -N bowtie2_test
#PBS -l nodes=1:ppn=1
#PBS -l mem=2gb
#PBS -l walltime=1:00:00
#PBS -M yourMyID@uga.edu
#PBS -m ae

cd $PBS_O_WORKDIR

module load Bowtie2/2.3.3-foss-2016b

7. $ qsub sub.sh

8. $ qstat me or qdel JobID

7.5/26/2018
GACRC Wiki http://wiki.gacrc.uga.edu

Running Jobs: https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2

Monitoring Jobs: https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

Job Submission Queue: https://wiki.gacrc.uga.edu/wiki/Job_Submission_Queues

Software: https://wiki.gacrc.uga.edu/wiki/Software

Transfer File: https://wiki.gacrc.uga.edu/wiki/Transferring_Files

Linux Command: https://wiki.gacrc.uga.edu/wiki/Command_List

Training: https://wiki.gacrc.uga.edu/wiki/Training

User Account Request: https://wiki.gacrc.uga.edu/wiki/User_Accounts
GACRC Support
https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593

Job Troubleshooting:
Please tell us details of your question or problem, including but not limited to:

- Your user name
- Your job ID
- Your working directory
- The queue name and command you used to submit the job

Software Installation:

- Specific name and version of the software
- Download website
- Supporting package information if have

Please note to make sure the correctness of datasets being used by your jobs!
GACRC Service Catalog

Services (11)

Account Creation
For a research group's PI to request user accounts for group members on the GACRC computing systems.

Class Account Creation
For an instructor to request user accounts for students attending a course that will need to use GACRC computing systems.

Class Account Modification
For instructors to request changes to be made in previously requested class account.

Computing Lab Modification/Delete

General Internal

General Support
Report issues and request help with GACRC systems, except for software installation requests and account/lab creation requests.

Lab Creation
For a research group's PI to register a computing lab on the GACRC computing systems.

Modify/Delete Account
For PIs to request changes in or deletion of user accounts on GACRC computing systems.

Software Installation/Update
Request software and common application databases (e.g. NCBI blast databases) installation and upgrade.
If you do not have a myUGA, please mail gacr-help@uga.edu, and we will respond promptly.

The purpose of this form is to provide a method to report issues and to request help with GACRC systems.

Please use this form for all questions and support needs (e.g. to report issues, to troubleshoot jobs, to request resources or granting help, etc.). Please do not use this form for software installation requests or lab user account management, which all have separate brrms.

Please refer to the GACRC documentation for information on GACRC resources, how to connect and transfer files, how to run jobs, installed software list, training schedule, and a FAQ.

The link to this documentation is https://wiki.gacrc.uga.edu

This site is operated by Enterprise Information Technology Services (EITS) at the University of Georgia.

Privacy | Accessibility | Website Feedback

https://uga.teamdynamic.com/tdclient/requests/servicescatalog/search
Report issues and request help with GACRC systems, except for software installation requests and account/lab creation requests.

Short Description

Email

MyID

Phone Number

Support Needed For

- [] Datalab
- [] SageWalp
- [] Teaching Cluster
- [] Work Filesystem
- [] Home Filesystem
- [] Scratch Filesystem
- [] Project Filesystem
- [] Wall Nodes
- [] Other

Lab
Appendix: Examples of Batch Serial/Threaded/MPI Job Scripts
https://wiki.gacrc.uga.edu/wiki/Sample_Scripts

• Components you need to run a job:
 ➢ **Software** already installed (cluster software or the one installed by yourself)
 ➢ **Job submission script** to
 1. specify computing resources:
 ✓ number of nodes and cores
 ✓ amount of memory
 ✓ maximum wallclock time
 2. load software using `ml load` (for cluster software)
 3. run any Linux commands you want to run, e.g., `pwd`, `mkdir`, `cd`, `echo`, etc.
 4. run the software
 ➢ **Input data** for analysis, if have

• Common queueing commands you need:
 ➢ `qsub`, `qstat_me`, `qstat`, `qdel`
 ➢ `qstat -f`, `showq`
Example 1: Serial job script running NCBI Blast+ using 1 CPU

#PBS -S /bin/bash ➔ Linux default shell (bash)
#PBS -q batch ➔ Queue name (batch)
#PBS -N testBlast ➔ Job name (testBlast)
#PBS -l nodes=1:ppn=1 ➔ Number of nodes (1), number of cores (1), node feature is NOT needed!
#PBS -l mem=20gb ➔ Maximum amount of RAM memory (20 GB) is enforced by the cluster!
#PBS -l walltime=48:00:00 ➔ Maximum wall-clock time (48 hours) for the job, default 6 minutes

cd $PBS_O_WORKDIR ➔ Compute node will use the directory from which the job is submitted as the working directory, i.e., /lustre1/MyID/workDir

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14 ➔ Load the module of ncbiblast+, version 2.6.0

time blastn [options] ... ➔ Run blastn with ‘time’ command to measure the amount of time it takes to run the application

https://wiki.gacrc.uga.edu/wiki/BLAST%2B-Sapelo2
Example 2: Threaded job script running NCBI Blast+ using 4 CPUs

```bash
#PBS -S /bin/bash  
#PBS -q batch  
#PBS -N testBlast  
#PBS -l nodes=1:ppn=4  
#PBS -l mem=20gb  
#PBS -l walltime=480:00:00  
#PBS -M jsmith@uga.edu  
#PBS -m ae  
#PBS -j oe  

cd $PBS_O_WORKDIR

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

time blastn -num_threads 4 [options] …  
```
Example 3: MPI job script running RAxML using 2 full nodes

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testRAxML
#PBS -l nodes=2:ppn=28
#PBS -l walltime=120:00:00
#PBS -l mem=100gb

cd $PBS_O_WORKDIR

ml load RAxML/8.2.11-foss-2016b-mpi-avx

mpirun --np 50 raxmlHPC-MPI-AVX [options]
```

- Number of nodes (2), number of cores (28)
- Total cores requested = 2 x 28 = 56
- We suggest, Number of MPI Processes (50) ≤ Number of cores requested (56)

To run raxmlHPC-MPI-AVX, MPI version using OpenMPI

Run raxmlHPC-MPI-AVX with 50 MPI processes (--np 50), default 56
Guideline Tips

• Do NOT use Login node to run CPU/memory intensive tasks directly ➔ submit job to queue!
• Do NOT use Login Node to transfer data between your local computer and cluster ➔ use Transfer node!
• Do NOT use Home for storing job data ➔ use /scratch/MyID
• Do NOT park data in Scratch or Local Scratch ➔ clean up when job finished or exits from node
• Do NOT park data permanently in Project ➔ download data to your local drive
• NO large memory job running on batch queue ➔ use highmem_q
• NO small memory job running on highmem_q queue ➔ use batch
• In general, number of threads you want to run with a parallel job = number of cores requested
Practical Tips

- Each directory should not have too many files inside! A rule of thumb would be to try to keep no more than a few tens of thousands of files (<10000 would be even better) in any single directory which is accessed frequently.

All files are in ONE single dir! ❌

Files are organized in subdirs! ✔️
Thank You!

Telephone Support
EITS Help Desk: 706-542-3106
Monday – Thursday: 7:30 a.m. – 7:30 p.m.
Friday: 7:30 a.m. – 6 p.m.
Saturday – Sunday: 1 p.m. – 7 p.m.

Georgia Advanced Computing Resource Center
101-108 Computing Services building
University of Georgia
Athens, GA 30602
https://gacrc.uga.edu/