

Introduction to HPC Using the New Cluster at GACRC

Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer <u>zhuofei@uga.edu</u>

Outline

- What is GACRC?
- What is the new cluster at GACRC?
- How does it operate?
- How to work with it?

What is GACRC?

Who Are We?

- Georgia Advanced Computing Resource Center
- Collaboration between the Office of Vice President for Research (OVPR) and the Office of the Vice President for Information Technology (OVPIT)
- Guided by a faculty advisory committee (GACRC-AC)

Why Are We Here?

To provide computing hardware and network infrastructure in support of highperformance computing (HPC) at UGA

Where Are We?

http://gacrc.uga.edu (Web)

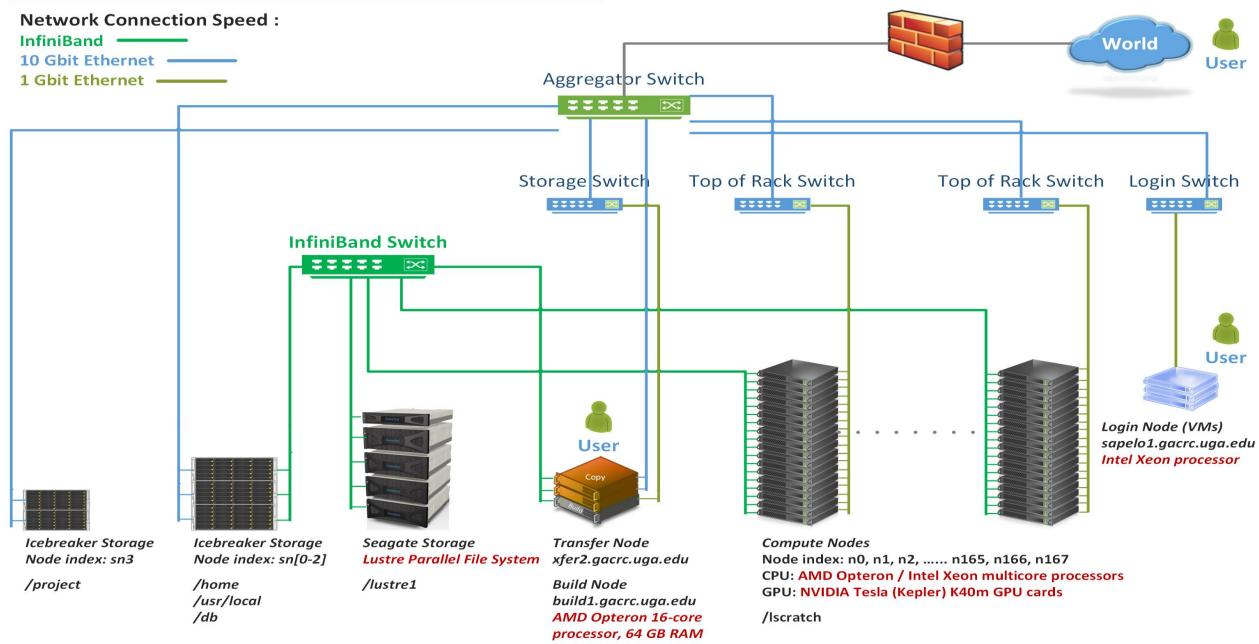
http://wiki.gacrc.uga.edu (Wiki)

- <u>http://gacrc.uga.edu/help/</u> (Web Help)
- <u>https://wiki.gacrc.uga.edu/wiki/Getting Help</u> (Wiki Help)

GACRC Users September 2015

Colleges & Schools	Depts	Pls	Users
Franklin College of Arts and Sciences	14	117	661
College of Agricultural & Environmental Sciences	9	29	128
College of Engineering	1	12	33
School of Forestry & Natural Resources	1	12	31
College of Veterinary Medicine	4	12	29
College of Public Health	2	8	28
College of Education	2	5	20
Terry College of Business	3	5	10
School of Ecology	1	8	22
School of Public and International Affairs	1	3	3
College of Pharmacy	2	3	5
	40	214	970
Centers & Institutes	9	19	59
TOTALS	: 49	233	1029

GACRC Users September 2015


Centers & Institutes	Pls	Users
Center for Applied Isotope Study	1	1
Center for Computational Quantum Chemistry	3	10
Complex Carbohydrate Research Center	6	28
Georgia Genomics Facility	1	5
Institute of Bioinformatics	1	1
Savannah River Ecology Laboratory	3	9
Skidaway Institute of Oceanography	2	2
Center for Family Research	1	1
Carl Vinson Institute of Government	1	2
	19	59

What is the new cluster at GACRC?

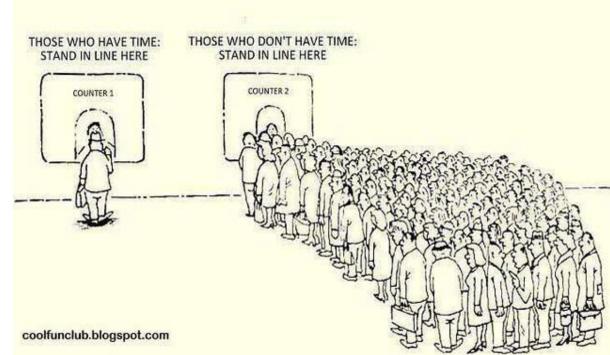
- Cluster Structural Diagram
- General Information
- Computing Resources

The New GACRC Linux HPC Cluster Structural Diagram

What is the new cluster – General Information

The new cluster is a Linux high performance computing (HPC) cluster:

- 64-bit CentOS 6.5 operating system
- User can login to:
 - Login node:sapelo1.gacrc.uga.edu (for login & job submission)Transfer mode:xfer2.gacrc.uga.edu (for data transferring & compression)Build node:build1.gacrc.uga.edu (for code compilation)
- InfiniBand network provides internodal communication:


compute nodes 🗇 compute nodes

compute nodes \Leftrightarrow storage systems, e.g., /home and /scratch

What is the new cluster – General Information

- Batch-queueing System:
 - Jobs can be started (submitted), monitored, and controlled
 - Determine which compute node is the best place to run a job
 - Determine appropriate execution priority for a job to run
- On new cluster:

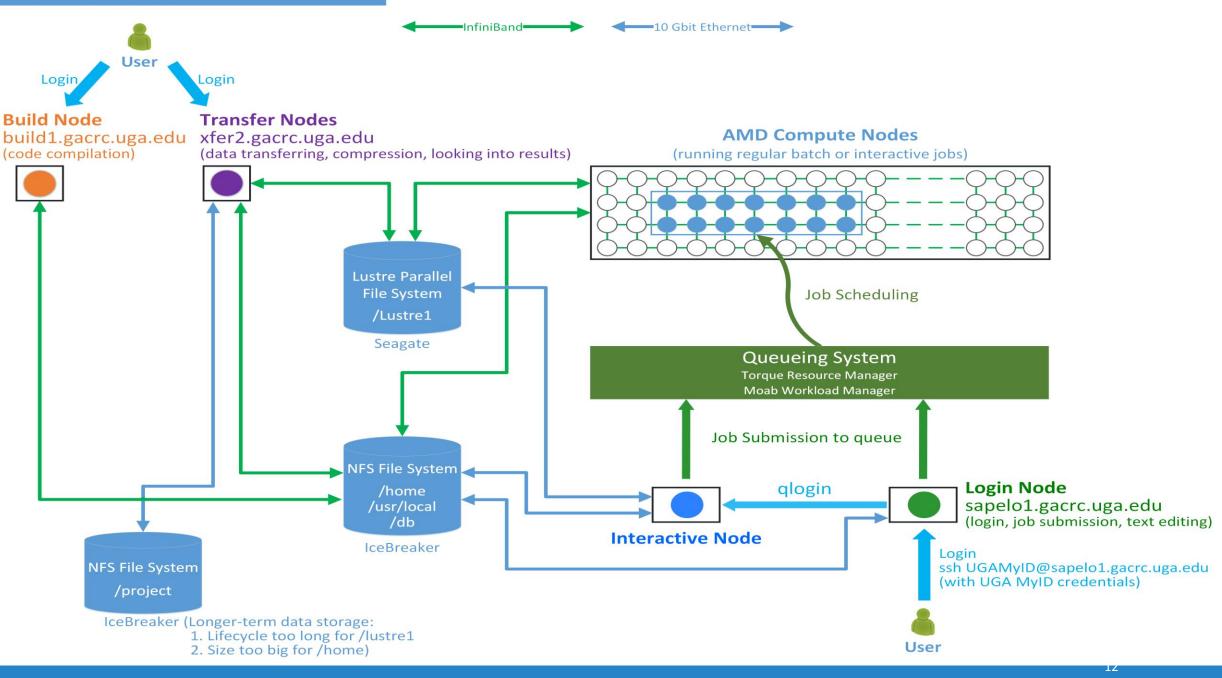
Torque Resource Manager Moab Workload Manager

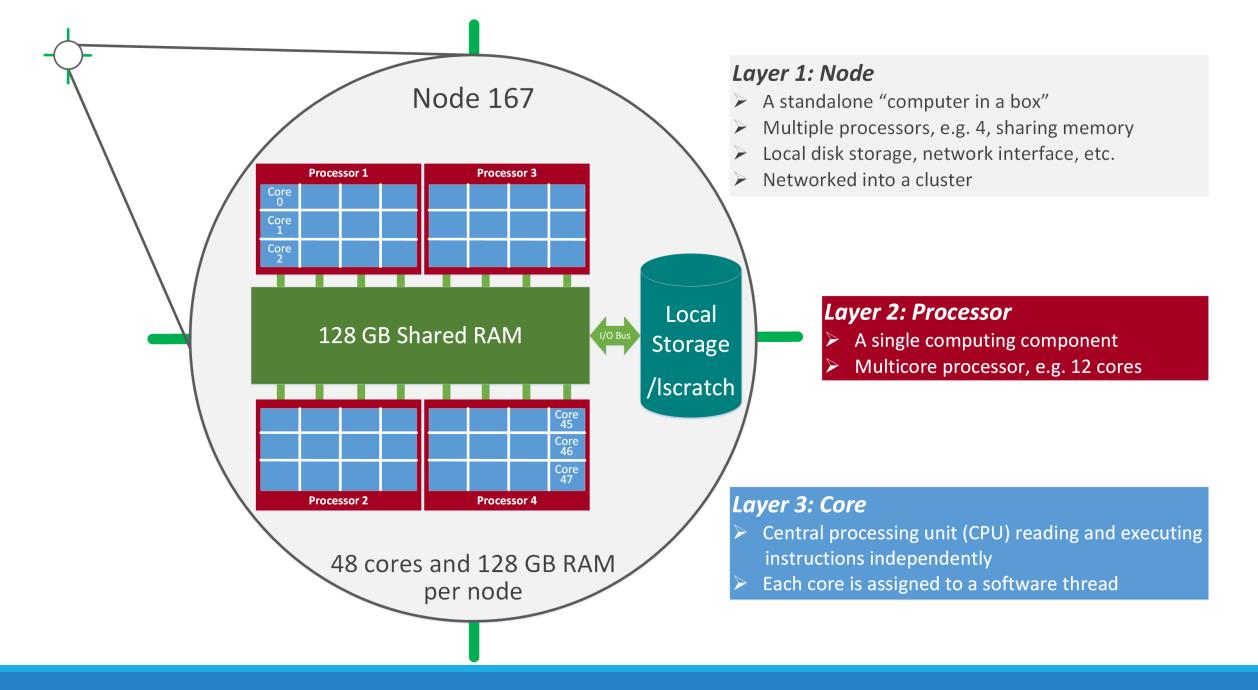
What is the new cluster – Computing Resources

Queue	Node Type	Total Nodes	Processor	Cores /Node	RAM (GB) /Node	Max RAM can be Request /Single-node Job	GPU	GPU Cards /Node	InfiniBand
	AMD	120	AMD Opteron	48	128	126	N/A	N/A	Yes
	HIGHMEM	3	AMD	48	512 (2)	504	N/A	N/A	Yes
batch		Ū	Opteron		1024 (1)	997	,,,	,	
	GPU	2	Intel Xeon	16	128	126	NVIDIA K40m	8	Yes
	abcnode (buy-in)	2	AMD Opteron	48	256	252	N/A	N/A	Yes

Peak Performance per Node: 500Gflops/Node

Home directory: **100GB**


Scratch directory on /lustre1: NO quota limit, auto-moved to /project if no modification in 30 days!



How does it operate?

Next Page

11

How to work with it?

Before we start:

- To get the new cluster to be your best HPC buddy, go to GACRC Wiki (<u>http://wiki.gacrc.uga.edu</u>) GACRC Web (<u>http://gacrc.uga.edu</u>)
- To get the most effective and qualified support from us, go to GACRC Support (<u>https://wiki.gacrc.uga.edu/wiki/Getting_Help</u>)
- To work happily and productively, follow the new cluster's Community Code of Conduct (CCOC)

How to work with it?

• Cluster's CCOC:

On cluster, you are not alone...... Each user is sharing finite resources, e.g., CPU cycles, RAM, disk storage, network bandwidth, with other researchers. *What you do may affect other researchers on the cluster*.

6 rules of thumb:

- > NO jobs running on login node
- > NO multi-threaded job running with only 1 core requested
- > NO large memory job running on regular nodes
- > NO long job running on interactive node
- > NO small memory job running on large memory nodes
- Use the copy node for file transfer and compression

How to work with it?

- Start with the Cluster
- Connect & Login
- Software Packages
- Run Jobs
 - How to submit a job
 - How to make a job submission script
 - How to check job status, cancel a job, etc.

How to work with it – Start with the Cluster

- You need a User Account: <u>UGAMyID@sapelo1.gacrc.uga.edu</u>
 To create your account correctly, you must provide us with your official
 UGA MyID, not a UGA MyID alias!
- To get a user account, follow 4 steps:
 - 1. New user training (<u>http://gacrc.uga.edu/help/training/</u>)
 - 2. Tell us your Name, UGA MyID, Lab name and PI's name, via GACRC Support (<u>https://wiki.gacrc.uga.edu/wiki/Getting Help</u>)
 - 3. We send you an invitation letter with instructions to start account initialization
 - 4. With Step 3 finished successfully, we send you a welcome letter with whole package of information about your account created successfully

How to work with it – Connect & Login

• Open a connection: Open a terminal and ssh to your account

ssh zhuofei@sapelo1.gacrc.uga.edu

or

ssh -X zhuofei@sapelo1.gacrc.uga.edu

(¹-X is for X windows application running on the cluster to be forwarded to your local machine ² If using Windows, use SSH client to open connection, get from UGA download software page)

• Logging in: You will be prompted for your UGA MyID password

zhuofei@sapelo1.gacrc.uga.edu's password:

(³ On Linux/Mac, when you type in the password, the prompt blinks and does not move)

• Logging out: exit to leave the system

[zhuofei@75-104 ~]\$ exit

How to work with it – Software Packages

- The cluster uses environment modules to define the various paths for software packages
- Current number of modules installed is ~70 and expanding daily!
- module avail to list all modules available on the cluster:

Core/StdEnv		exabayes/1.4.1		java/jdk1.8.0_20		openmpi/1.6.5/gcc/4.4.7		rsem/latest	
)ata/cache/moduleT.new		examl/3.0.11		java/latest	(D)	openmpi/1.6.5/pgi/14.9		rsem/1.2.20	(D
ata/cache/moduleT	(D)	expat/latest		lammps/5Sep14		openmpi/1.8.3/gcc/4.4.7		samtools/latest	
ata/system.txt		expat/2.0.1	(D)	lammps/16Aug13	(D)	openmpi/1.8.3/gcc/4.7.4		samtools/0.1.19	
/3.1.2		fastqc/latest		moab/7.2.10		openmpi/1.8.3/gcc/4.8.0	(D)	samtools/1.1	
edops/latest		fastqc/0.11.3	(D)	moab/8.1.1	(D)	openmpi/1.8.3/intel/14.0		samtools/1.2	([
edops/2.4.14	(D)	gcc/4.7.4		moabs/1.3.2		openmpi/1.8.3/intel/15.0.2	(D)	scripture/latest	
oost/1.47.0/gcc447		gcc/4.8.0	(D)	mvapich2/2.0.0/gcc/4.4.7		openmpi/1.8.3/pgi/14.9		scripture/03202015	([
oost/1.57.0/gcc447		gmap-gsnap/latest		mvapich2/2.0.0/pgi/14.9		orca/3.0.3		sparsehash/latest	
oost/1.57.0_thread/gcc44	7	gmap-gsnap/2014-12-24	(D)	ncbiblast+/2.2.29		perl/latest		sparsehash/2.0.2	([
owtie/latest		gnuplot/5.0.0		netcdf/3.6.3/gcc/4.4.7		perl/5.20.1		tophat/latest	
owtie/1.1.1	(D)	gsl/1.16/gcc/4.4.7		netcdf/3.6.3/intel/14.0		per1/5.20.2	(D)	tophat/2.0.13	([
owtie2/latest		ĥdf5/1.8.14/gcc/4.4.7		netcdf/3.6.3/intel/15.0.	2 (D)	pgi/14.9		trinity/latest	
owtie2/2.2.4	(D)	hdf5/1.8.14/intel/15.0.2		netcdf/4.1.3/gcc/4.4.7		pgi/14.10	(D)	trinity/r20140717	
uda/5.0.35/gcc/4.4.7		hdf5/1.8.14/pgi/14.9		netcdf/4.1.3/intel/15.0.	2	python/2.7.8-ucs4		trinity/2.0.6	(
uda/6.5.14/gcc/4.4.7		imb/3.2		netcdf/4.1.3/pgi/14.10		python/2.7.8		zlib/gcc447/1.2.8	
ufflinks/latest		intel/14.0		netcdf/4.3.2/gcc/4.4.7		python/3.4.3	(D)		
ufflinks/2.2.1	(D)	intel/15.0.2	(D)	netcdf/4.3.2/pgi/14.9		raxml/8.1.20		19	

How to work with it – Software Packages

• module list to list which modules currently loaded:

[zhuofei@75-104 ~]\$ module list

Currently Loaded Modules: 1) StdEnv 2) moab/7.2.10

module load to load the needed modules:

```
[zhuofei@75-104 ~]$ module load ncbiblast+/2.2.29
[zhuofei@75-104 ~]$ module load python/2.7.8
[zhuofei@75-104 ~]$ module load R/3.1.2
[zhuofei@75-104 ~]$ module list
Currently Loaded Modules:
   1) StdEnv 2) moab/7.2.10 3) ncbiblast+/2.2.29 4) python/2.7.8 5) R/3.1.2
```

module unload to remove the specific module:

```
[zhuofei@75-104 ~]$ module unload R/3.1.2
[zhuofei@75-104 ~]$ module list
Currently Loaded Modules:
1) StdEnv 2) moab/7.2.10 3) ncbiblast+/2.2.29 4) python/2.7.8
```


- Components you need to run a job:
 - Software already loaded. If not, used module load
 - Job submission script to run the software, specifying computing resources:
 - ✓ Number of nodes and cores
 - ✓ Amount of memory
 - ✓ Type of nodes
 - ✓ Maximum wallclock time, etc.
- Common commands you need:
 - qsub, qdel
 - qstat -f, showjobs, showq etc.

- How to submit a job? *Easy!* [zhuofei@75-104 MPIs]\$ (qsub sub sb)
 qsub is to submit a job
 submit a job
 submit a job
 - ✓ Amount of memory
 - ✓ Type of nodes
 - ✓ Maximum wallclock time, etc.
- How to make a job submission script? Next Page!

• Example 1: Serial job script *sub.sh* running NCBI Blast +

#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=1:AMD
#PBS -l mem=20gb
#PBS -l walltime=48:00:00

cd \$PBS_O_WORKDIR

module load ncbiblast+/2.2.29

time blastn [options] > outputfile

- → Linux shell (bash)
- → Queue name (batch)
- → Name of the job (testBlast)
- \rightarrow Number of nodes (1), number of cores/node (1), node type (AMD)
- → Maximum amount of physical memory (20 GB) used by the job
- → Maximum wall clock time (48 hours) for the job, default 6 minutes
- Use the directory from which the job is submitted as the working directory
- → Load the module of ncbiblast+, version 2.2.29
- Run blastn with 'time' command to measure the amount of time it takes to run the application

• Example 2: Threaded job script *sub.sh* running NCBI Blast + with 4 threads

#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=4:AMD
#PBS -l walltime=480:00:00
#PBS -l mem=20gb

#PBS -M jSmith@uga.edu
#PBS -m ae
#PBS -j oe

cd \$PBS_O_WORKDIR

module load ncbiblast+/2.2.29

Number of nodes (1), number of cores/node (4), node type (AMD) <u>Number of threads (4) = Number of cores requested (4)</u>

→ Email to receive a summary of computing resources used by the job

- \rightarrow Receive an email when the job finishes (e)
- Standard error file (testBlast.e1234) will be merged into standard out file (testBlast.o1234)

Run blastn with 4 threads (-num_threads 4)

• Example 3: MPI job script *sub.sh* running RAxML with 50 MPI processes

#PBS -S /bin/bash #PBS -q batch #PBS -N testRAxML #PBS -l nodes=2:ppn=48:AMD #PBS -l walltime=480:00:00 #PBS -l mem=20gb #PBS -j oe

Number of nodes (2), number of cores/node (48), node type (AMD)
 Total cores requested = 2 × 48 = 96
 <u>We suggest, Number of MPI Processes (50) ≤ Number of cores requested (96)</u>

cd \$PBS_O_WORKDIR

module load raxml/8.1.20 To run raxmlHPC-MPI-AVX, MPI version using OpenMPI 1.8.3/Intel 15.0.2 module load intel/15.0.2 module load openmpi/1.8.3/intel/15.0.2

mpirun –np 50 raxmlHPC-MPI-AVX [options] > outputfile → Run raxmlHPC-MPI-AVX with 50 MPI processes (–np 50)

#PBS -S /bin/bash #PBS -q batch **#PBS -N testRAxML** \rightarrow ppn number (27) fewer than 48 MUST be a multiplier of 3! #PBS -l nodes=2:ppn=27:AMD **#PBS -I walltime=480:00:00** #PBS -I mem=20gb #PBS -j oe cd \$PBS_O_WORKDIR # Context Sharing CONTEXTS=\$(/usr/local/bin/set_contexts.sh \$PBS_NUM_PPN) New lines copied from GACRC Wiki if [["\$?" -eq "0"]] ; then export PSM SHAREDCONTEXTS MAX=\$CONTEXTS module load raxml/8.1.20 module load intel/15.0.2

module load openmpi/1.8.3/intel/15.0.2

mpirun –np 50 raxmlHPC-MPI-AVX [options] > outputfile → Run raxmlHPC-MPI-AVX with 50 MPI processes (–np 50)

• How to check job status? *qstat!*

[jSmith@75-104 MP Job ID	Is]\$qstat Name	User	Time Use S Queue
481929.pbs 481931.pbs 481934.pbs	testJob1 testJob2 testJob3	jSmith jSmith jSmith jSmith	900:58:0 C batch 04:00:03 R batch 0 Q batch
Job status: R : job is running C : job completed (or cras Q : job is pending, waiting		- ·	n this state for 1h

• How to cancel *testJob3* with jobID 481934? **qdel!**

[zhuofei@75-104 MPIs] [jSmith@75-104 MPIs]\$ Job ID		User	Time Use S Queue	
481929.pbs 481931.pbs 481934.pbs	testJob1 testJob2 testJob3	jSmith jSmith jSmith jSmith	900:58:0 C batch 04:00:03 R batch 0 C batch	🗲 Stay on list 1 hr

• How to check computing resources? *qstat -f JobID* for a *running job* or a *finished job in 1 hour*)

```
[zhuofei@75-104 MPIs]$ qstat -f 481939
Job Id: 481939.pbs.scm
Job_Name = testJob
Job_Owner = zhuofei@uga-2f0f976.scm
job_state = Q
queue = batch
.
Error_Path = uga-2f0f976.scm:/home/zhuofei/MPIs/testJob.e481939
.
Join_Path = oe
.
Mail_Points = abe
```


• How to check computing resources? *showjobs JobID* for a *finished job over 1 hour, but no longer than 7 days*)

```
[zhuofei@75-104 MPIs]$ qstat -f 481939
Job Id: 481939.pbs.scm
   Job_Name = testJob
   Job_Owner = zhuofei@uga-2f0f976.scm
   job_state = Q
   queue = batch
   .
   Error_Path = uga-2f0f976.scm:/home/zhuofei/MPIs/testJob.e481939
   .
   Join_Path = oe
   .
   Mail_Points = abe
```


 How to check queue status?
 showq!

[zhuofei@75-104 MM	PIs]\$(showq)				
active jobs					
JOBID	USERNAME	STATE	PROCS	REMAINING	STARTTIM
481914	brant	Running		20:46:21	Fri Jun 12 11:32:23
481915	brant	Running		20:48:56	Fri Jun 12 11:34:58
481567	becton	Running	288	2:04:15:48	Wed Jun 10 15:01:50
481857		Running	48	9:18:21:41	Fri Jun 12 09:07:43
481859		Running	48	9:18:42:21	Fri Jun 12 09:28:23
• 108 active jobs		5740 prod	cessors	in use by l	.ocal jobs (89.56%)
		L22 nodes	active	e (99.18	
eligible jobs					
481821	joykai	Idle	48		Thu Jun 11 13:41:20
481813	joykai	Idle	48		Thu Jun 11 13:41:19
481811	joykai	Idle	48		Thu Jun 11 13:41:19
481825	joykai				Thu Jun 11 13:41:20
50 eligible jobs					
blocked jobs					
JOBID	USERNAME	STATE	PROCS	WCLIMIT	QUEUETIM
0 blocked jobs					
Total jobs: 158					

Thank You!