

High Performance Computing (HPC) Using zcluster at GACRC

On-class STAT8060

Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu

Outline

- What is GACRC?
- What is HPC Concept?
- What is zcluster?
- How to work with zcluster?

What is GACRC?

Who Are We?

- Georgia Advanced Computing Resource Center
- Collaboration between the Office of Vice President for Research (OVPR) and the Office of the Vice President for Information Technology (OVPIT)
- Guided by a faculty advisory committee (GACRC-AC)

Why Are We Here?

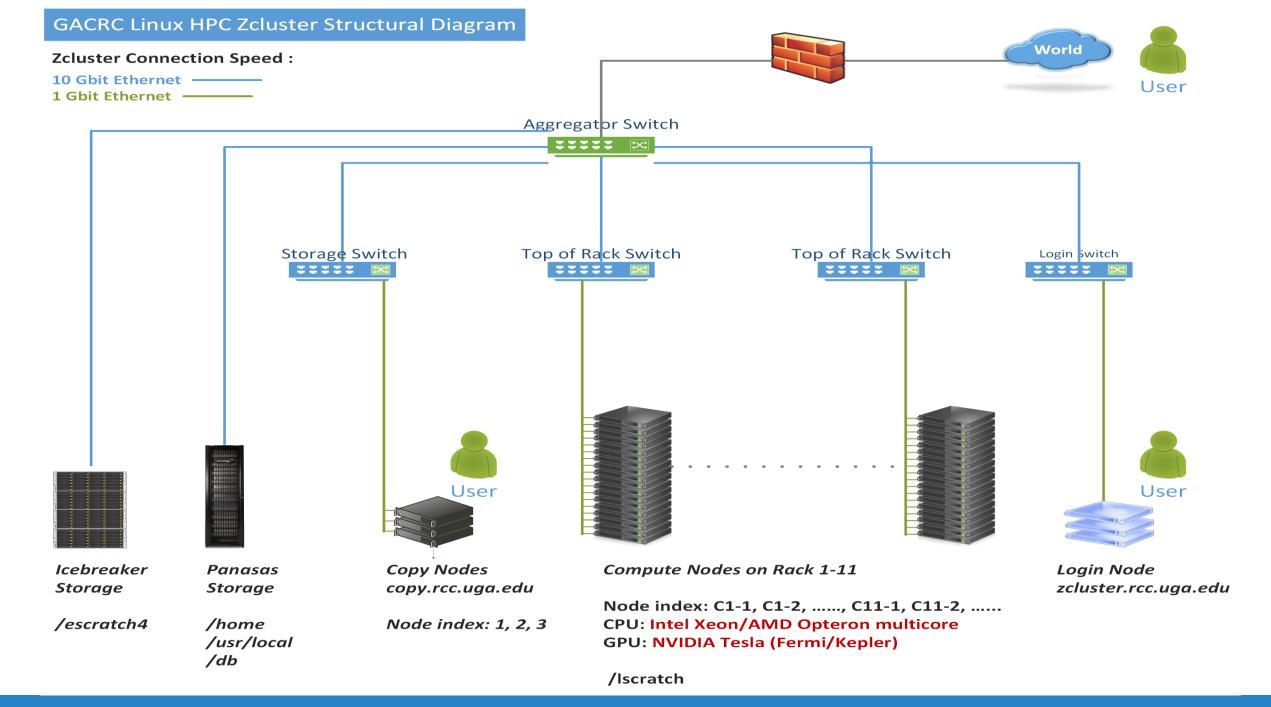
To provide computing hardware and network infrastructure in support of highperformance computing (HPC) at UGA

Where Are We?

- <u>http://gacrc.uga.edu</u> (Web) <u>http://wiki.gacrc.uga.edu</u> (Wiki)
- <u>https://wiki.gacrc.uga.edu/wiki/Getting_Help</u> (Support)
- <u>https://blog.gacrc.uga.edu</u> (Blog) <u>http://forums.gacrc.uga.edu</u> (Forums)

What is HPC Concept

- ✓ Problem broken into discrete instructions
- ✓ Instructions executed sequentially
- Only 1 instruction executed at any moment on a single processor
- Problem broken into parts can be solved concurrently
- \checkmark Further broken into a series of instructions
- Instructions executed simultaneously on multiply processors
- Synchronization/communication mechanism employed

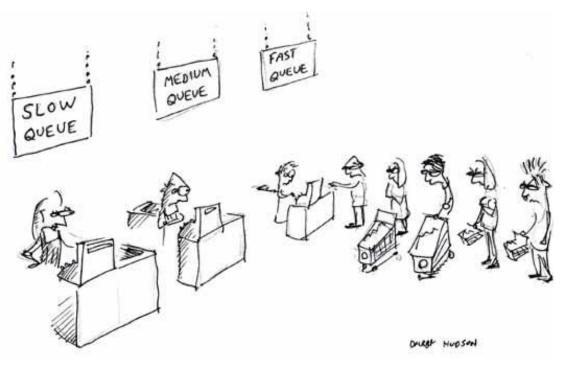

What is zcluster?

Cluster Structural Diagram

General Information

Computing Resources

Disk Storage

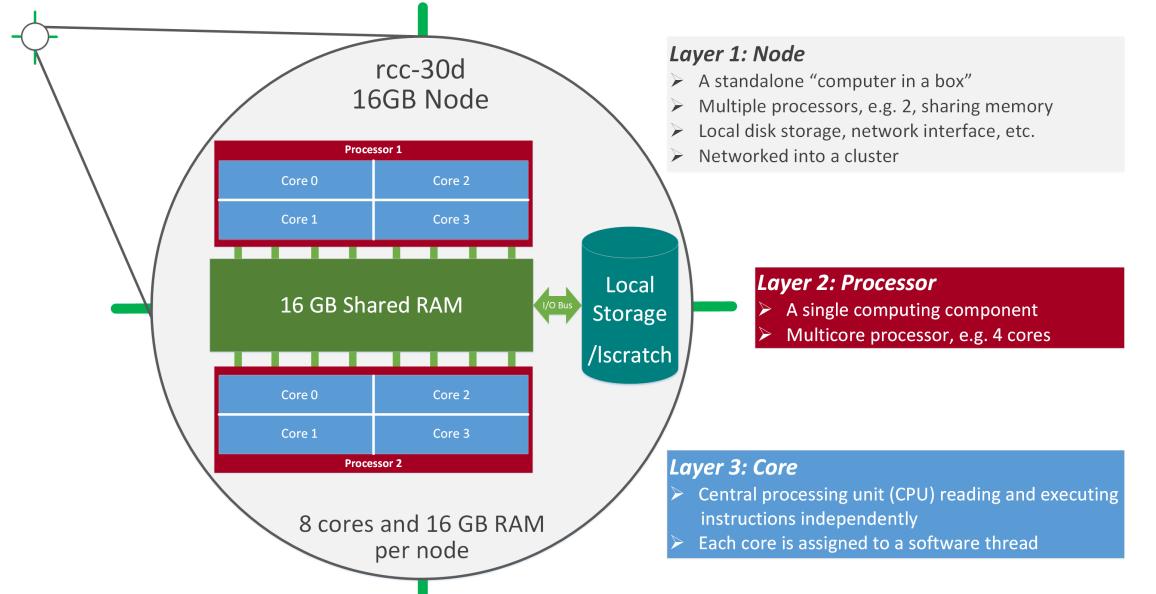

What is zcluster – General Information

zcluster is a Linux high performance computing (HPC) cluster:

- Operating System: 64-bit Red Hat Enterprise Linux 5 (RHEL 5)
- Login Node: zcluster.rcc.uga.edu Copy Node: copy.rcc.uga.edu
- Internodal Communication: 1Gbit network compute nodes compute nodes storage systems

What is zcluster – General Information

- Batch-queueing System:
 - Jobs can be started (submitted), monitored, and controlled
 - Determine which compute node is the best place to run a job
 - Determine appropriate execution priority for a job to run
- On zcluster: Sun Grid Engine (SGE)



What is zcluster – Computing Resources

	Queue Type	Queue Name	Nodes	Processor	Cores/Node	RAM(GB)/Node	Cores	NVIDIA GPU	
♦	Regular	rcc-30d	45	Intel Xeon	12	48	540	N/A	
			150	inter keon	8	16	1200	N/A	
		rcc-m128-30d	4	Intel Xeon	8	192	32		
	High Memory		10		12	256	120	N/A	
		rcc-m512-30d	2		32	512	64		
	Multi Core	rcc-mc-30d	6	AMD Opteron	32	64	192	N/A	
	Interactive	interq	2	AMD Opteron	48	132	96	N/A	
	GPU	rcc-sgpu-30d	2	Intel Xeon	8	48	16	4 Tesla S1070 cards	
		rcc-mgpu-30d	2		12	48	24	9 Tesla (Fermi) M2070 cards	
		rcc-kgpu-30d	4		12	96	24	32 Tesla (Kepler) K20Xm cards	

Total peak performance: 23 Tflops

ÎGACRC

What is zcluster – Disk Storage

- Home directory →/home/student/stat8060/username (e.g., s_01, s_02, ...)
 - Mounted and visible on all nodes, with a quota of ~100GB
 - Any directory on /home has snapshot backups
 - > Taken once a day, and maintained 4 daily ones and 1 weekly one
 - Name: .snapshot, e.g., /home/abclab/jsmith/.snapshot
 - Completely invisible, however, user can "cd" into it and then "ls":

zhuofei@zclust	er:~\$ ls -a						
	.bash_profile		.fontconfig				
1. A.	.bashrc		.gnuplot_histor	y .Mathematica	openMPs	serials	.viminfo
.bash_history	downloads	exe	history	.mc			.Xauthority
	.emacs	.flexlmrc	lesshst		Pthreads	.ssh 🗲	.snapshot is NOT
zhuofei@zclust	er:~\$cd .snaps	shot) 🗲 car	n "cd" into .snapshot				shown here!
zhuofei@zclust	er:~/.snapshot	🖇 ls 🗲 the	en "ls" to list its conte	ents			
2015.06.21.00.	00.01.weekly 2	2015.06.27.0	1.00.01.daily	2015.06.28.01.00.0	1.daily 2	2015.06.30	.01.00.01.daily
2015.06.26.01.	00.01.daily 2	2015.06.28.0	0.00.01.weekly	2015.06.29.01.00.0	01.daily		

What is zcluster – Disk Storage

- Local scratch → /lscratch/username (e.g., s_01, s_02, ...)
 - ➢ On local disk of each compute node → node-local storage
 - rcc-30d 8-core nodes: ~18GB, rcc-30d 12-core nodes: ~370GB
 - No snapshot backup
 - Usage Suggestion: If your job writes results to /lscratch, job submission script should move the data to your home or escratch before exit
- Ephemeral Scratch → /escratch4/username_Aug_26 (e.g., s_01_Aug_26)
 - > Create with make escratch command
 - Visible to all nodes with a quota of 4TB
 - No snapshot backup
 - > To be deleted after **37 days**

How to work with zcluster?

Before we start:

- To get zcluster to be your best HPC buddy, go to GACRC Wiki (<u>http://wiki.gacrc.uga.edu</u>) GACRC Web (<u>http://gacrc.uga.edu</u>)
- To get the most effective and qualified support from us, go to GACRC Support (<u>https://wiki.gacrc.uga.edu/wiki/Getting_Help</u>)
- To work happily and productively, follow the cluster's Community Code of Conduct (CCOC)

How to work with it?

• Cluster's CCOC:

On cluster, you are not alone...... Each user is sharing finite resources, e.g., CPU cycles, RAM, disk storage, network bandwidth, with other researchers. *What you do may affect other researchers on the cluster*.

- 6 rules of thumb to remember:
 - NO jobs running on login node
 - > NO multi-threaded job running with only 1 core requested
 - > NO large memory job running on regular nodes
 - > NO long job running on interactive node
 - > NO small memory job running on large memory nodes
 - Use the copy node for file transfer and compression

How to work with zcluster?

- Start with zcluster
- Connect & Login
- > Transfer Files
- Softwares Installed
- Run Interactive Jobs
- Run Batch Jobs
 - How to run serial jobs
 - How to run *threaded* jobs
 - How to run MPI jobs
 - How to check job status, cancel a job, etc.

How to work with zcluster – Start with zcluster

- > You need a User Account, e.g., : s_01@zcluster.rcc.uga.edu
- Procedure: https://wiki.gacrc.uga.edu/wiki/User_Accounts
- A UGA faculty member (PI) may register a computing lab: http://help.gacrc.uga.edu/labAcct.php
- The PI of a computing lab may request user accounts for members of his/her computing lab: http://help.gacrc.uga.edu/userAcct.php
- User receives an email notification once the account is ready
- User can use passwd command to change initial temporary password

How to work with zcluster – Connect & Login

• Open a connection: Open a terminal and ssh to your account

ssh s_40@zcluster.rcc.uga.edu

or

ssh -X s 40@zcluster.rcc.uga.edu

(¹-X is for X windows application running on the cluster to be forwarded to your local machine ² If using Windows, use SSH client to open connection, get from UGA download software page)

• Logging in: You will be prompted for your zcluster password

s 40@zcluster.rcc.uga.edu's password:

(³ On Linux/Mac, when you type in the password, the prompt blinks and does not move)

• Logging out: exit to leave the system

s 400zcluster:~\$ exit

How to work with zcluster – Transfer Files

User's local

Copy node (copy.rcc.uga.edu) of zcluster

On Linux, Mac or cygwin on Windows : scp [Source] [Target]
 E.g. 1: On local machine, do Local

 zcluster

scp file1 s 40@copy.rcc.uga.edu:~/subdir

scp *.dat s_40@copy.rcc.uga.edu:~/subdir

E.g. 2: On local machine, do zcluster \rightarrow Local

scp s_40@copy.rcc.uga.edu:~/subdir/file ./

scp s_40@copy.rcc.uga.edu:~/subdir/*.dat ./

• On Window: FileZilla, WinSCP, etc.

How to work with zcluster – Softwares Installed

- Perl, Python, Java, awk, sed, C/C++ and Fortran compilers
- Matlab, Maple, R, Julia
- Many Bioinformatics applications: NCBI Blast+, Velvet, Trinity, TopHat, MrBayes, SoapDeNovo, Samtools, RaxML, etc.
- RCCBatchBlast (RCCBatchBlastPlus) to distribute NCBI Blast (NCBI Blast+) searches to multiple nodes.
- > Many Bioinformatics Databases: NCBI Blast, Pfam, uniprot, etc.
- For a complete list of applications installed: https://wiki.gacrc.uga.edu/wiki/Software

How to work with zcluster – Run Interactive Jobs

• To run an interactive job, you need to open a session on an interactive node using qlogin command:

- Current maximum runtime is **12** hours
- When you are done, remember to exit the session!
- Note: Julia can NOT run on interactive nodes with AMD Opteron CPUs

How to work with zcluster – Run Batch Jobs

- Components you need to run a batch job:
 - Software already installed on zcluster (Julia)
 - Job submission script to run the software,
 - ✓ Specifying working directory
 - Exporting environment variables, e.g.,
 OMP_NUM_THREADS (OpenMP threads number)
 LD_LIBRARY_PATH (searching paths for shared libraries)
- Common commands you need:
 - qsub with specifying queue name, threads or MPI rank number
 - > qstat, qdel
 - qacct, qsj, etc.

How to work with zcluster – Run Batch Serial Jobs

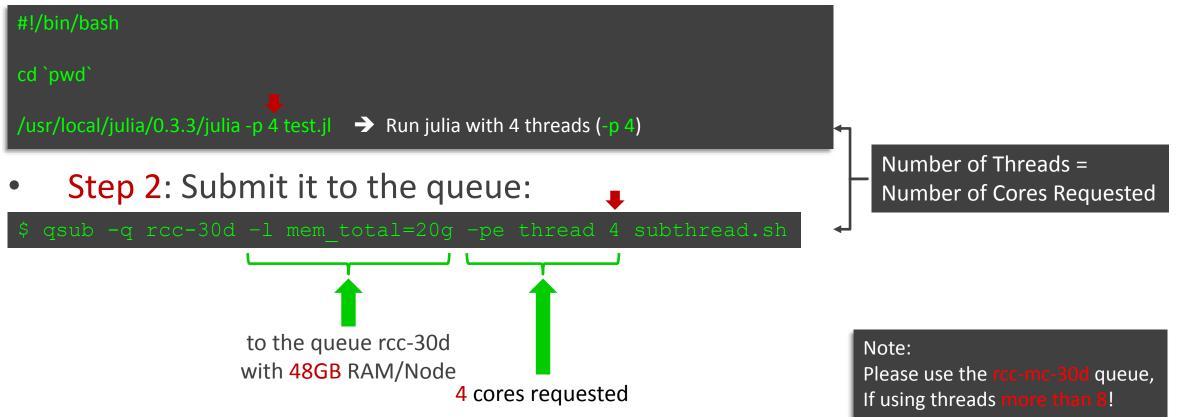
• **Step 1**: Create a job submission script *subserial.sh* running julia:

#!/bin/bash → Linux shell (bash)

cd `pwd`

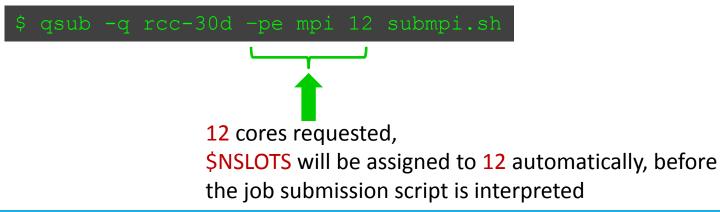
Specify and enter (cd) the working directory (pwd command gives the path of your current directory)

/usr/local/julia/0.3.3/julia test.jl → Run julia script test.jl


• **Step 2**: Submit it to the queue:

How to work with zcluster – Run Batch *Threaded* Jobs

• **Step 1**: Create a job submission script *subthread.sh* running julia:



How to work with zcluster – Run Batch MPI Jobs

• **Step 1**: Create a job submission script *submpi.sh* running julia:

• **Step 2**: Submit it to the queue:

How to work with zcluster – Check and Cancel Jobs

• To check the status of all queued and running jobs: qstat

qstat	ightarrow shows your job in the pool
qstat –u "*"	ightarrow shows all the jobs in the pool
qstat –j 12345	shows detailed information, e.g., maxymem, about the job with JOBID 12345
qstat –g t	Iist all nodes used by your jobs

- To cancel a queued or running job: qdel
 - qdel −u zhuofei→ deleted all your jobsqdel 12345→ deletes your job with JOBID 12345
- To list detailed information about a job: qsj, qacct

qsj 12345→ shows information, e.g., maxymem, about the RUNNING job with JOBID 12345qacct -j 12345→ shows information, e.g., maxymem, about the ENDED job with JOBID 12345

Thank You! Good Luck STAT8060!

From Yecheng:

• Software support issue:

What kind of software support we are responsible for the users? or definition of our software support

From Shan-Ho:

- rcc-30d : For MPI, max 75 cores total to be requested
- rcc-mc-30d : max 32 threads to be allowed
- rcc-m128-30d: max 5 cores to be requested rcc-m512-30d: max 8 cores to be requested