Introduction to GACRC Computing Facility
- Sapelo2 Cluster

Georgia Advanced Computing Resource Center (GACRC)
EITS/University of Georgia
Zhuofei Hou zhuofei@uga.edu
GACRC

- A high-performance-computing (HPC) center at the UGA
- Provide to the UGA research and education community an advanced computing environment:
 - HPC computing and networking infrastructure located at the Boyd Data Center
 - Comprehensive collection of scientific, engineering and business applications
 - Consulting and training services

Wiki: http://wiki.gacrc.uga.edu
Support: https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593
Web Site: http://gacrc.uga.edu
Outline

What is Sapelo2 Cluster
• Diagram and Overview
• Storage Environment
• Computing Resources
• Software Environment

Work on Sapelo2 Cluster
• Job Submission Workflow
• How to Know Job Details
• How to Know Node Details
• qlogin Command
• Code Compilation

GACRC Links

Appendix
Please Note: You need to connect to the UGA network using VPN when accessing from outside of the UGA main campus.

UGA VPN: https://eits.uga.edu/access_and_security/infosec/tools/vpn/

Node: Computer for a specific function on cluster, e.g., login node

Queue: Collection of compute nodes for specific computing need

Cluster: Nodes + Drives, all connected by network
Overview https://wiki.gacrc.uga.edu/wiki/Systems#Sapelo2

- **Two Nodes:**
 1. Login node for batch job workflow: MyID@sapelo2.gacrc.uga.edu
 2. Transfer node for data transferring: MyID@xfer.gacrc.uga.edu

- **Five Directories:**
 1. **Home**: Login landing spot; 100GB quota; Backed-up
 2. **Scratch**: High-speed storage for **temp files** needed for **current jobs**; NO quota; NOT backed-up
 3. **Work**: High-speed storage for **input files** needed for **repeated jobs**; per group quota of 500GB and max 100,000 single files; NOT backed-up
 4. **Project**: Temporary data parking; per group quota of 1TB; Backed-up (ONLY accessible from Transfer node!)
 5. **Local Scratch**: Local storage on each individual compute node; 200GB quota; NOT backed-up

- **Four Computational Queues**: batch, highmem_q, gpu_q, groupBuyin_q
<table>
<thead>
<tr>
<th>Directory</th>
<th>Name</th>
<th>Quota</th>
<th>Accessible from</th>
<th>Intended Use</th>
<th>Backed-up</th>
<th>Important Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>/home/MyID</td>
<td>Home</td>
<td>100GB</td>
<td>Login</td>
<td>Static data, e.g. 1. Scripts, source codes 2. Local software</td>
<td>Yes</td>
<td>Not for storing data of your jobs!</td>
</tr>
<tr>
<td>/scratch/MyID</td>
<td>Scratch</td>
<td>No Limit</td>
<td>Transfer, Compute</td>
<td>Temporary files needed for current running jobs</td>
<td>No</td>
<td>Clean up when your job finished! Subject to “30-day purge” policy</td>
</tr>
<tr>
<td>/work/abclab</td>
<td>Work</td>
<td>500GB 10^5 files</td>
<td>Transfer</td>
<td>Input files needed for repeated jobs</td>
<td>No</td>
<td>Clean up any old data! Group sharing is possible</td>
</tr>
<tr>
<td>/project/abclab</td>
<td>Project</td>
<td>1TB (initial)</td>
<td>Transfer</td>
<td>Temporary data parking</td>
<td>Yes</td>
<td>Group sharing is possible</td>
</tr>
<tr>
<td>/scratch</td>
<td>Local Scratch</td>
<td>200GB</td>
<td>Compute</td>
<td>Jobs with heavy disk I/O operations</td>
<td>No</td>
<td>Clean up when job exits from node! Data are persistent</td>
</tr>
</tbody>
</table>
More about scratch file system "30-day purge" policy

https://wiki.gacrc.uga.edu/wiki/Disk_Storage#Scratch_file_system

Any file that is not accessed or modified by a compute job in a time period no longer than 30 days will be automatically deleted off the /scratch file system.

Measures circumventing this policy will be monitored and actively discouraged.

- You have a list of those purgeable files located at /usr/local/var/lustre_stats/$USER.over30d.files.lst
- You are suggested to copy files from /scratch to /project or outside of GACRC
- You should first move all unnecessary files and folders to /scratch/trash/$USER
- The fastest way to save your old files is to copy them to /project area, using the fpsync utility on xfer.gacrc.uga.edu
- If you want to first create a tar archive of your /scratch area, DO NOT compress the archive when creating the archive
<table>
<thead>
<tr>
<th>Queue</th>
<th>Total Nodes</th>
<th>RAM(GB)/Node</th>
<th>Max Mem(GB)/Single-node job</th>
<th>Cores/Node</th>
<th>Processor Type</th>
<th>GPU Cards /Node</th>
<th>IB</th>
</tr>
</thead>
<tbody>
<tr>
<td>batch</td>
<td>42</td>
<td>192</td>
<td>184</td>
<td>32</td>
<td>Intel Xeon Skylake</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>58</td>
<td>28</td>
<td>Intel Xeon Broadwell</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>128</td>
<td>120</td>
<td>48</td>
<td>AMD Opteron</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>18 (+46)</td>
<td>128</td>
<td>120</td>
<td>32</td>
<td>AMD EPYC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>highmem_q</td>
<td>5 (+4)</td>
<td>1024</td>
<td>990</td>
<td>28 48 (64)</td>
<td>Intel Xeon Broadwell (4)</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AMD Opteron (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 (+10)</td>
<td>512</td>
<td>502</td>
<td>32, 48</td>
<td>AMD EPYC (8+10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intel Xeon Nehalem (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AMD Opteron (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AMD EPYC (8+10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gpu_q</td>
<td>4</td>
<td>192</td>
<td>184</td>
<td>32</td>
<td>Intel Xeon Skylake</td>
<td>1 NVDIA P100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>128</td>
<td>120</td>
<td>16</td>
<td>Intel Xeon</td>
<td>8 NVIDIA K40m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>96</td>
<td>90</td>
<td>12</td>
<td>Intel Xeon</td>
<td>7 NVIDIA K20Xm</td>
<td></td>
</tr>
<tr>
<td>groupBuyin_q</td>
<td>variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Environment https://wiki.gacrc.uga.edu/wiki/Software

1. Software names are long and have an EasyBuild toolchain name associated to it
2. Complete module name: Name/Version-toolchain, e.g., Python/3.6.4-foss-2018a
3. Software names are case-sensitive!
 - `module avail` : List all available software modules installed on cluster
 - `module load moduleName` : Load a module into your working environment
 - `module list` : List modules currently loaded
 - `module unload moduleName` : Remove a module from working environment
 - `module spider pattern` : Search module names using a pattern (case-insensitive)
Job Submission Workflow

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2

1. Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo:

 `ssh MyID@sapelo2.gacrc.uga.edu`

2. On Login node, change directory to your scratch space:

 `cd /scratch/MyID`

3. Create a working subdirectory for a job:

 `mkdir ./workDir`

4. Change directory to `workDir`:

 `cd ./workDir`

5. Transfer data from local computer to `workDir`:

 Use `scp` or SSH File Transfer to connect Transfer node.

 Transfer data on cluster to `workDir`:

 Log on to Transfer node and then use `cp` or `mv`.

6. Make a job submission script in `workDir`:

 `nano ./sub.sh`

7. Submit a job from `workDir`:

 `qsub ./sub.sh` (refer to slide 20-22 for example job scripts)

8. Check job status:

 `qstat_me` or Cancel a job:

 `qdel JobID`
How to Know Job Details

https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

Option 1: `qstat -n1rt -u MyID` for node info of running jobs (array jobs)

Option 2: `qstat -f JobID` for details of running jobs or finished jobs within 24 hours

Option 3: Email notification from finished jobs (completed, canceled, or crashed), if using:

```
#PBS -M MyID@uga.edu
#PBS -m ae
```
How to Know Node Details

Option 1: mdiag -v -n | grep [pattern] | ...

- mdiag -v -n | grep batch | grep AMD
- mdiag -v -n | grep batch | grep Intel
- mdiag -v -n | grep highmem_q
- mdiag -v -n | grep grpBuyin_q

Option 2: from login node, ssh to a compute node and run a command there

- ssh n72 'lscpu'
- ssh n222 'free -g'
- ssh n237 "ps aux | grep '^MyID'"
qlogin Commands

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2 - How_to_open_an_interactive_session

1. Type qlogin commands from Login node to open Interactive node:
 - `qlogin_intel`: Start an interactive session on an Intel node
 - `qlogin_amd`: Start an interactive session on an AMD node
 - `qlogin`: start an interactive job on either type of nodes

2. Type `exit` command to quit and back to Login node
Code Compilation – Compiler Suite and Compiler toolchain
https://wiki.gacrc.uga.edu/wiki/Code_Compilation_on_Sapelo2

GCC/8.3.0-2.32 ➔ GNU 8.3.0-2.32 compiler suite
PGI/18.10-GCC-6.4.0-2.28 ➔ PGI 18.10 compiler suite
iccifort/2018.1.163-GCC-6.4.0-2.28 ➔ Intel 18.0.1.163 compiler suite
foss/2016b ➔ GCC 5.4.0, OpenMPI 1.10.3, OpenBLAS 0.2.18, FFTW 3.3.4, ScALAPACK 2.0.2
foss/2018a ➔ GCC 6.4.0, OpenMPI 2.1.2, OpenBLAS 0.2.20, FFTW 3.3.7, ScALAPACK 2.0.2
foss/2018b ➔ GCC/7.3.0, OpenMPI 3.1.1, OpenBLAS 0.3.1, FFTW 3.3.8, ScALAPACK 2.0.2
foss-cuda/2018b ➔ foss/2018b with CUDA 9.2.88
gmvolf/2016b ➔ GCC 5.4.0, MVAPICH2 2.2, OpenBLAS 0.2.18, FFTW 3.3.4, ScALAPACK 2.0.2
iomkl/2018a ➔ Intel 2018.1.163 compiler suite, OpenMPI 2.1.2, MKL 2018.1.163
imvmkl/2018a ➔ Intel 2018.1.163 compiler suite, MVAPICH2 2.2, MKL 2018.1.163
Code Compilation – Considerations for MPI

https://en.wikipedia.org/wiki/InfiniBand

Sapelo2 nodes are communicating via InfiniteBand (IB): QDR and EDR

```bash
mdia -v -n | grep batch | grep QDR
mdia -v -n | grep batch | grep EDR
```
When compile MPI codes using MVAPICH2, you will need to differentiate EDR from QDR;

But it is not necessary for OpenMPI

module spider MVAPICH2

<table>
<thead>
<tr>
<th>QDR Versions</th>
<th>EDR Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVAPICH2/2.2-GCC-5.4.0-2.26</td>
<td>MVAPICH2/2.3-GCC-5.4.0-2.26-EDR</td>
</tr>
<tr>
<td>MVAPICH2/2.2-GCC-6.4.0-2.28</td>
<td>MVAPICH2/2.3-GCC-6.4.0-2.28-EDR</td>
</tr>
<tr>
<td>MVAPICH2/2.2-iccifort-2013_sp1.0.080</td>
<td>MVAPICH2/2.3-iccifort-2013_sp1.0.080-EDR</td>
</tr>
<tr>
<td>MVAPICH2/2.2-iccifort-2015.2.164-GCC-4.8.5</td>
<td>MVAPICH2/2.3-iccifort-2015.2.164-GCC-4.8.5-EDR</td>
</tr>
<tr>
<td>MVAPICH2/2.2-iccifort-2018.1.163-GCC-6.4.0-2.28</td>
<td>MVAPICH2/2.3-iccifort-2018.1.163-GCC-6.4.0-2.28-EDR</td>
</tr>
</tbody>
</table>
Memory request for MPI job: using pmem, instead of mem, in your job script

For example:

```bash
#PBS -l pmem=2gb
```

pmem: maximum memory for each process
GACRC Buy-In Program

Cost of hardware + one-time service costs (IB, Ethernet port charges, etc.)

GACRC takes responsibility of systems administration for 5 years

Special queue accesses group buy-in nodes

Designate who can access your buy-in nodes. For example, we have 9 research groups that are sharing 22 compute nodes.

Does not stop you from submitting jobs to general-purpose queues

Matching funds are available – see next slide
GACRC Buy-In Program – Matching Funds

Each fiscal year, Tim Chester makes $100k available as matching funds

Conditions are:

First-come, first-served

Buy 1 or more compute node(s), get 1 matched, up to $10k

If node cost is >$10k, buy 2 or more nodes and get $10k discount

Matched nodes incur one-time service costs

Here’s a very recent example ->
<table>
<thead>
<tr>
<th>Item</th>
<th>#</th>
<th>Unit Cost</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1P Compute Node - 32 Cores 256GB RAM</td>
<td>3</td>
<td>$7,491.20</td>
<td>$22,473.60</td>
</tr>
<tr>
<td>Dell PowerEdge R6415 Server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>single AMD EPYC 7551P 2.00GHz, 32C/64T, 64M Cache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eight 32GB RDIMM 2666MT/s Dual Rank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240GB SSD SATA Read Intensive MLC 6Gbps 2.5in Hot-plug Drive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>960GB SSD SATA Read Intensive 6Gbps 512n 2.5in Hot-plug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mellanox ConnectX-4 dual-port Port 10/25 GbE SFP+ PCIE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mellanox ConnectX-5 Single-Port EDR Infiniband network adapter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Year Warranty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable, InfiniBand EDR, QSFP/QSFP, Passive Copper, 3m, Mellanox</td>
<td>3</td>
<td>$139.46</td>
<td>$418.38</td>
</tr>
<tr>
<td>Adaptive Moab Suite BE - 2 sockets, cotermed to 12/17/2020</td>
<td>3</td>
<td>$213.76</td>
<td>$641.28</td>
</tr>
<tr>
<td>VPIT Matching Funds</td>
<td></td>
<td>-$7,844.42</td>
<td></td>
</tr>
<tr>
<td>EITS One-Time Service Costs</td>
<td></td>
<td></td>
<td>$2,334.09</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td>$18,022.93</td>
</tr>
</tbody>
</table>
GACRC Links

Main Page: http://wiki.gacrc.uga.edu

Running Jobs: https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2

Software: https://wiki.gacrc.uga.edu/wiki/Software

Transfer File: https://wiki.gacrc.uga.edu/wiki/Transferring_Files

Linux Command: https://wiki.gacrc.uga.edu/wiki/Command_List

Training: https://wiki.gacrc.uga.edu/wiki/Training

User Account Request: https://wiki.gacrc.uga.edu/wiki/User_Accounts

Support: https://wiki.gacrc.uga.edu/wiki/Getting_Help
Appendix: Examples of Batch Serial/Threaded/MPI Job Scripts
https://wiki.gacrc.uga.edu/wiki/Sample_Scripts

• Components you need to run a job:
 - Software already installed (cluster software or the one installed by yourself)
 - Job submission script to
 1. specify computing resources:
 ✓ number of nodes and cores
 ✓ amount of memory
 ✓ maximum wallclock time
 2. load software using `ml load` (for cluster software)
 3. run any Linux commands you want to run, e.g., `pwd`, `mkdir`, `cd`, `echo`, etc.
 4. run the software
 - Input data for analysis, if have

• Common queueing commands you need:
 - `qsub`, `qstat_me`, `qstat`, `qdel`
 - `qstat -f`, `showq`
Example 1: *Serial job script running NCBI Blast+ using 1 CPU*

```
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=1
#PBS -l mem=20gb
#PBS -l walltime=48:00:00

cd $PBS_O_WORKDIR

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

time blastn [options] ...
```

- Linux default shell (bash)
- Queue name (batch)
- Job name (testBlast)
- Number of nodes (1), number of cores (1), node feature is NOT needed!
- Maximum amount of RAM memory (20 GB) is enforced by the cluster!
- Maximum wall-clock time (48 hours) for the job, default 6 minutes
- Compute node will use the directory from which the job is submitted as the working directory, i.e., /lustre1/MyID/workDir
- Load the module of ncbiblast+, version 2.6.0
- Run blastn with ‘time’ command to measure the amount of time it takes to run the application

https://wiki.gacrc.uga.edu/wiki/BLAST%2B-Sapelo2
Example 2: Threaded job script running NCBI Blast+ using 4 CPUS

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=4
#PBS -l mem=20gb
#PBS -l walltime=480:00:00
#PBS -M jsmith@uga.edu
#PBS -m ae
#PBS -j oe

cd $PBS_O_WORKDIR

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

time blastn -num_threads 4 [options] ...
```

- Number of nodes (1), number of cores (4)

 Number of cores requested (4) = Number of threads (4)

- Email address to receive a notification for computing resources
- Send email notification when job aborts (a) or terminates (e)
- Standard error file (testBlast.e12345) will be merged into standard out file (testBlast.o12345)

Run blastn with 4 threads (-num_threads 4)
Example 3: MPI job script running RAxML using 2 full nodes

```
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testRAxML
#PBS -l nodes=2:ppn=28
#PBS -l walltime=120:00:00
#PBS -l mem=100gb

cd $PBS_O_WORKDIR

ml load RAxML/8.2.11-foss-2016b-mpi-avx

mpirun -np 50 raxmlHPC-MPI-AVX [options]
```

- Number of nodes (2), number of cores (28)
- Total cores requested = 2 × 28 = 56
- We suggest, Number of MPI Processes (50) ≤ Number of cores requested (56)

To run raxmlHPC-MPI-AVX, MPI version using OpenMPI

Run raxmlHPC-MPI-AVX with 50 MPI processes (−np 50), default 56
Thank You!

Telephone Support
EITS Help Desk: 706-542-3106
Monday – Thursday: 7:30 a.m. – 7:30 p.m.
Friday: 7:30 a.m. – 6 p.m.
Saturday – Sunday: 1 p.m. – 7 p.m.

Georgia Advanced Computing Resource Center
101-108 Computing Services building
University of Georgia
Athens, GA 30602
https://gacrc.uga.edu/