GACRC Sapelo2 Cluster New User Training

Georgia Advanced Computing Resource Center (GACRC)
Enterprise Information Technology Services (EITS)
The University of Georgia
Outline

• GACRC

• Sapelo2 Cluster
 ➢ Cluster Diagram
 ➢ Overview
 ➢ Five Directories
 ➢ Four Computational Queues
 ➢ Software Modules

• Batch Job Submission Workflow

• qlogin Commands for interactive sessions

• GACRC Wiki and User Support
GACRC

- A high-performance-computing (HPC) center at the UGA
- Provide to the UGA research and education community an advanced computing environment:
 - HPC computing and networking infrastructure located at the Boyd Data Center
 - Comprehensive collection of scientific, engineering and business applications
 - Consulting and training services

Wiki: http://wiki.gacrc.uga.edu
Web Site: http://gacrc.uga.edu
Please Note: You need to connect to the UGA network using VPN when accessing from outside of the UGA main campus. UGA VPN: https://eits.uga.edu/access_and_security/infosec/tools/vpn/

1. ssh with MyID and password
 - ssh

2. Verify with Archpass Duo
 - ssh
 - two-factor authentication

Node: **Computer** for a specific function on cluster, e.g., login node

Queue: Collection of **compute nodes** for specific computing need

Cluster: **Nodes + Drives**, all connected by network

Login Node
- `sapelo2.gacrc.uga.edu`

Compute Nodes
- `scratch/MyID`
 - No quota limit
- `work/abclab`
 - 500Gb/10^5 files

Home
- `/home/MyID`
 - 200 Gb

Transfer Node
- `/xfer.gacrc.uga.edu`

Project
- `/project/abclab`
 - 1 TB

Computational Queues
- **batch**
 - For regular jobs
- **highmem_q**
 - For high memory jobs
- **gpu_q**
 - For GPU-enabled jobs
Two Nodes:

1. Login node for batch job workflow: MyID@sapelo2.gacrc.uga.edu
2. Transfer node for data transferring: MyID@xfer.gacrc.uga.edu

Five Directories:

1. Home: Login landing spot; 200GB quota; Backed-up
2. Scratch: High-speed storage for temp files needed for current jobs; NO quota; NOT backed-up
3. Work: High-speed storage for input files needed for repeated jobs; per group quota of 500GB and max 100,000 single files; NOT backed-up
4. Project: Temporary data parking; per group quota of 1TB; Backed-up (ONLY accessible from Transfer node!)
5. Local Scratch: Local storage on each individual compute node; 200GB quota; NOT backed-up

Four Computational Queues: batch, highmem_q, gpu_q, groupBuyin_q
Five Directories

https://wiki.gacrc.uga.edu/wiki/Disk_Storage

<table>
<thead>
<tr>
<th>Directory</th>
<th>Name</th>
<th>Quota</th>
<th>Accessible from</th>
<th>Intended Use</th>
<th>Backed-up</th>
<th>Important Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>/home/MyID</td>
<td>Home</td>
<td>200GB</td>
<td>Login</td>
<td>Static data, e.g. 1. Scripts, source codes 2. Local software</td>
<td>Yes</td>
<td>Not for storing data of your jobs!</td>
</tr>
<tr>
<td>/scratch/MyID</td>
<td>Scratch</td>
<td>No Limit</td>
<td>Transfer Compute</td>
<td>Temporary files needed for current running jobs</td>
<td>No</td>
<td>Clean up when your job finished! Subject to “30-day purge” policy</td>
</tr>
<tr>
<td>/work/abclab</td>
<td>Work</td>
<td>500GB</td>
<td>Transfer</td>
<td>Input files needed for repeated jobs</td>
<td>No</td>
<td>Clean up any old data! Group sharing is possible</td>
</tr>
<tr>
<td>/project/abclab</td>
<td>Project</td>
<td>1TB (initial)</td>
<td>Transfer</td>
<td>Temporary data parking</td>
<td>Yes</td>
<td>Group sharing is possible</td>
</tr>
<tr>
<td>/lscratch</td>
<td>Local Scratch</td>
<td>200GB</td>
<td>Compute</td>
<td>Jobs with heavy disk I/O operations</td>
<td>No</td>
<td>Clean up when job exits from node! Data are persistent</td>
</tr>
</tbody>
</table>
Accessing Directories from Nodes

- `/home/MyID`
- `/scratch/MyID`
- `/work/abclab`

Please Note:
Local scratch is accessible on each individual compute node; it is not shown here.
Any file that is not accessed or modified by a compute job in a time period no longer than 30 days will be automatically deleted off the /scratch file system.

Measures circumventing this policy will be monitored and actively discouraged.

- You have a list of those purgeable files located at /usr/local/var/lustre_stats/$USER.over30d.files.lst
- You are suggested to copy files from /scratch to /project or outside of GACRC
- You should first move all unnecessary files and folders to /scratch/trash/$USER
- The fastest way to save your old files is to copy them to /project area, using the fpsync utility on xfer.gacrc.uga.edu
- If you want to first create a tar archive of your /scratch area, **DO NOT compress the archive when creating the archive**
<table>
<thead>
<tr>
<th>Queue</th>
<th>Total Nodes</th>
<th>RAM(GB)/Node</th>
<th>Max Mem(GB)/Single-node job</th>
<th>Cores/Node</th>
<th>Processor Type</th>
<th>GPU Cards/Node</th>
<th>InfiniBand</th>
</tr>
</thead>
<tbody>
<tr>
<td>batch</td>
<td>42</td>
<td>192</td>
<td>184</td>
<td>32</td>
<td>Intel Xeon Skylake</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>58</td>
<td>28</td>
<td>Intel Xeon Broadwell</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>128</td>
<td>120</td>
<td>48</td>
<td>AMD Opteron</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>128</td>
<td>120</td>
<td>32</td>
<td>AMD EPYC</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>highmem_q</td>
<td>9</td>
<td>1024</td>
<td>990</td>
<td>28</td>
<td>48</td>
<td>64</td>
<td>Intel Xeon Broadwell (4)</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>512</td>
<td>502</td>
<td>32</td>
<td>32</td>
<td>48</td>
<td>Intel Xeon Nehalem (1)</td>
</tr>
<tr>
<td>gpu_q</td>
<td>4</td>
<td>192</td>
<td>184</td>
<td>32</td>
<td>Intel Xeon Skylake</td>
<td>1 NVDIA P100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>128</td>
<td>120</td>
<td>16</td>
<td>Intel Xeon</td>
<td>8 NVDIA K40m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>96</td>
<td>90</td>
<td>12</td>
<td>Intel Xeon</td>
<td>7 NVDIA K20Xm</td>
<td></td>
</tr>
</tbody>
</table>

groupBuyin_q variable
Software Environment

1. Software names are long and have a EasyBuild toolchain name associated to it

2. Complete module name: Name/Version-toolchain, e.g., Python/3.6.4-foss-2018a

3. Software names are case-sensitive!

 - `module avail`: List all available software modules installed on cluster
 - `module load moduleName`: Load a module into your working environment
 - `module list`: List modules currently loaded
 - `module unload moduleName`: Remove a module from working environment
 - `ml spider pattern`: Search module names matching a pattern (case-insensitive)
Job Submission Workflow

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2

1. Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo:

   ```
   ssh MyID@sapelo2.gacrc.uga.edu
   ```

2. On Login node, change directory to your scratch space:

   ```
   cd /scratch/MyID
   ```

3. Create a working subdirectory for a job:

   ```
   mkdir ./workDir
   ```

4. Change directory to `workDir`:

   ```
   cd ./workDir
   ```

5. Transfer data from local computer to `workDir`:

 - Use `scp` or **SSH File Transfer** to connect Transfer node
 - Transfer data on cluster to `workDir`:

     ```
     log on to Transfer node and then use cp or mv
     ```

6. Make a job submission script in `workDir`:

   ```
   nano ./sub.sh
   ```

7. Submit a job from `workDir`:

   ```
   qsub ./sub.sh
   ```

8. Check job status:

   ```
   qstat_me or Cancel a job: qdel JobID
   ```
Step1: Log on to Login node - Mac/Linux using ssh
https://wiki.gacrc.uga.edu/wiki/Connecting#Connecting_to_Sapelo2

1. Open **Terminal** utility

2. Type command line: `ssh MyID@sapelo2.gacrc.uga.edu`

3. You will be prompted for your **MyID password**

4. Sapelo2 access requires ID verification using two-factor authentication with Archpass Duo. If you are not enrolled in Archpass Duo, please refer to

 https://eits.uga.edu/access_and_security/infosec/tools/archpass_duo/ on how to enroll
Step1 (Cont.) - Mac/Linux using ssh

Use Terminal utility on Mac or Linux!

```
zhufeihou@172-20-19-h149:~$
zhufeihou@172-20-19-h149:~$
zhufeihou@172-20-19-h149:~$ ssh zhufeihu@sapelo2.gacrc.uga.edu
Password:
Duo two-factor login for zhufeihou
```

Enter a passcode or select one of the following options:

1. Duo Push to XXX-XXX-5758
2. Phone call to XXX-XXX-1925
3. Phone call to XXX-XXX-5758
4. SMS passcodes to XXX-XXX-5758

Passcode or option (1-4): 1

```
Pushed a login request to your device...
Success. Logging you in...
zhufeihou@sapelo2-sub2:~$
zhufeihou@sapelo2-sub2:~$
```

Log on
Input MyID password!
Select Duo login option!
I am on sapelo2-sub2!
Step 1 (Cont.) - Windows using SSH Secure Utilities

1. Download and install SSH Secure Utilities: http://eits.uga.edu/hardware_and_software/software/

2. You can use PuTTY as an alternative: https://www.putty.org/
Please Note:
Authorization Method needs to be set as Keyboard Interactive in default <profile Setting>
Step 1 (Cont.) - Windows using SSH Secure Utilities

Host Name: sapelo2.gacrc.uga.edu
User Name: MyID
Port Number: 22

8. Enter your UGA MyID password and click OK
Step1 (Cont.) - Windows using SSH Secure Utilities

9. Enter “push” and click OK

10. Verify login using Duo, then you will log on!
Step2: On Login node change directory to global scratch

- Once you logged on, your current directory will be your **home directory**

  ```
  zhuofei@sapelo2-sub2 ~$ pwd
  /home/zhuofei
  ← this is my home directory!
  ```

- Use `cd` command to change your current directory to `/scratch/MyID`

  ```
  zhuofei@sapelo2-sub2 /$ cd /scratch/zhuofei
  zhuofei@sapelo2-sub2 zhuofei$ pwd
  /scratch/zhuofei
  ← this is my scratch space!
  ```

- Use `ls` command to take a look in `/scratch/MyID`

  ```
  zhuofei@sapelo2-sub2 zhuofei$ ls
  user_test  workDir_Alex  workDir_bk
  ```
Step 3 - 4: Create and cd to a working subdirectory

- Use `mkdir` command to make a subdirectory in `/scratch/MyID`

  ```
  zhuofei@sapelo2-sub2 zhuofei$ mkdir workDir
  zhuofei@sapelo2-sub2 zhuofei$ ls
  user_test workDir workDir_Alex workDir_bk
  ```

- Use `cd` command to change your current directory to `/scratch/MyID/workDir`

  ```
  zhuofei@sapelo2-sub2 zhuofei$ cd workDir
  zhuofei@sapelo2-sub2 zhuofei$ ls
  ⏪ it is empty!
  ```
Step 5: Transfer data from local computer to workDir - Mac/Linux

https://wiki.gacrc.uga.edu/wiki/Transferring_Files

1. You need to connect to cluster’s Transfer node (xfer.gacrc.uga.edu)
2. Open Terminal utility on local computer to use scp (-r) [Source] [Target]

E.g. 1: working on local computer, from Local ➔ workDir on cluster

```
scp ./file zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/
scp -r ./folder/ zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/
```

E.g. 2: working on local computer, from workDir on cluster ➔ Local

```
scp zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/file .
scp -r zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/folder/ .
```
Step5 (Cont.) - Windows using SSH Secure Utilities

1. You need to connect to cluster’s Transfer node (xfer.gacrc.uga.edu)

2. Use SSH File Transfer on local computer (alternative FileZilla or WinSCP)

3. Steps 1-10 are the same as steps on page 14-15, except for Host Name in step

 Host Name: xfer.gacrc.uga.edu

4. Once you log on, use File Transfer of SSH Secure Utilities, as shown on next page
Step5 (Cont.) - Windows using SSH Secure Utilities

1. Click to open File Transfer

2. Change local and remote paths

3. Drag data between local computer and remote Transfer node
Step5 (Cont.): Transfer data on cluster to workDir

- Log on to Transfer node (xfer.gacrc.uga.edu)
 - Mac/Linux: ssh MyID@xfer.gacrc.uga.edu (page 12)
 - Windows: use SSH Secure Utilities (page 19)
- Landing folder: /home/MyID (Home)
- You can transfer data between following directories on cluster using cp or mv:
 1. /home/MyID (Home)
 2. /scratch/MyID (Scratch)
 3. /work/abclab (Work)
 4. /project/abclab (Project)
- Most file systems on Transfer are auto-mounted upon the first time full-path access, e.g.,
 cd /project/abclab/
Step 6: Make a job submission script in workDir
https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2#Job_submission_Scripts

```
$ nano sub.sh
```

Nano is a small and friendly text editor on Linux.

Ctrl-x to save file and quit from nano.
Step6 (Cont.)

1. Sample script on GACRC Wiki Software page: https://wiki.gacrc.uga.edu/wiki/Bowtie2-Sapelo2

2. Modify it as needed for your computing

To run this example, you need to copy 3 files into your current working dir:

cp /usr/local/training/sub.sh .
cp /usr/local/training/myreads.fq .
cp -r /usr/local/training/index .

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N bowtie2_test
#PBS -l nodes=1:ppn=1
#PBS -l mem=2gb
#PBS -l walltime=1:00:00
#PBS -M zhuofei@uga.edu
#PBS -m ae
cd $PBS_O_WORKDIR
module load Bowtie2/2.3.3-foss-2016b
time bowtie2 -p 1 -x ./index/lambda_virus -U ./myreads.fq -S output.sam
```

default Linux bash shell
use batch queue
job name
1 compute node and 1 core from the node
total RAM memory (enforced!)
job running time on cluster (enforced!)
Step 7: Submit a job from workDir using `qsub`

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2#How_to_submit_a_job_to_the_batch_queue

```
zhuofei@sapelo2-sub2 workDir$ pwd
/scratch/zhuofei/workDir
zhuofei@sapelo2-sub2 workDir$ ls
index myreads.fq sub.sh
zhuofei@sapelo2-sub2 workDir$ qsub sub.sh
11943.sapelo2
```

sub.sh is job submission script to

1. specify computing resources:
2. load software using `module load`
3. run any Linux commands you want to run
4. run the software
Step 8: Check job status using `qstat_me`

https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time Use</th>
<th>S</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11943.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:06:40</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11944.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:05:17</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11946.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:12:51</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11947.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>0</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11948.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>0</td>
<td>Q</td>
<td>batch</td>
</tr>
</tbody>
</table>

R: job is running
C: job completed (or canceled or crashed) and is not longer running. Jobs stay in this state for 24 hours
Q: job is pending, waiting for resources to become available

Note: “Time Use” is the CPU time, instead of the wall-clock time of your job staying on cluster!
Step8 (Cont.): Cancel job using `qdel`

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2#How_to_delete_a_running_or_pending_job

```
zhuofei@sapelo2-sub2 workDir$ qdel 11947
zhuofei@sapelo2-sub2 workDir$ qstat_me
```

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time Use</th>
<th>S</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11943.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:06:40</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11944.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:05:17</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11946.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:12:51</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11947.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:00:09</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11948.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:00:09</td>
<td>Q</td>
<td>batch</td>
</tr>
</tbody>
</table>

Job 11947 status is changed from R to C
C status will stay in list for ~24 hour
Step8 (Cont.): Check Job using `qstat -n -u MyID`
https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

```
zhuofei@sapelo2-sub2 workDir$ qstat -n -u zhuofei

dispatch.ecompute:

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Username</th>
<th>Queue</th>
<th>Jobname</th>
<th>SessID</th>
<th>NDS</th>
<th>TSK</th>
<th>Req'd Memory</th>
<th>Req'd Time</th>
<th>Elap Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>12175.sapelo2</td>
<td>zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>132442</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00 R</td>
<td>00:23:44</td>
</tr>
<tr>
<td>n238/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12176.sapelo2</td>
<td>zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>67226</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00 R</td>
<td>00:20:44</td>
</tr>
<tr>
<td>n237/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12177.sapelo2</td>
<td>zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>119643</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00 R</td>
<td>00:05:44</td>
</tr>
</tbody>
</table>

Note: “Elap Time” is the wall-clock time, instead of the CPU time, which `qstat_me` can give you!
Step 8 (Cont.): Check Job using `qstat -f JobID`  
https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

```
zhufei@sapelo2-sub2 workDir$ qstat -f 12175
Job Id: 12175.sapelo2
 Job_Name = bowtie2_test
 Job_Owner = zhufei@sapelo2-sub1.ecompute
 resources_used.cput = 00:20:08
 resources_used.mem = 157064kb
 resources_used.vmem = 287900kb
 resources_used.walltime = 00:20:10
 job_state = R
 queue = batch

......
 Error_Path = sapelo2-sub1.ecompute:/scratch/zhufei/workDir/bowtie2_test.e12175
 Output_Path = sapelo2-sub1.ecompute:/scratch/zhufei/workDir/bowtie2_test.o12175

......
 Resource_List.nodes = 1:ppn=1
 Resource_List.walltime = 1:00:00
 Resource_List.mem = 2gb

......
 submit_args = sub.sh

......
 init_work_dir = /scratch/zhufei/workDir
```
Summary: Obtain Job Details

https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2

Option 1:

qstat -n -u MyID for running/pending/completed jobs on cluster
qstat -nr -u MyID for running jobs on cluster
qstat -nrt -u MyID for running jobs on cluster, showing each array job element

Option 2:

qstat -f JobID for detail info of a running jobs or finished job within 24 hours

Option 3:

Email notification from finished jobs (completed, canceled, or crashed), if using:

#PBS -M MyID@uga.edu
#PBS -m ae
1. **Linux/Mac user:**
   
   ```
 ssh MyID@sapelo2.gacrc.uga.edu
   ```

   **Windows user:**
   
   ```
 ssh MyID@xfer.gacrc.uga.edu
   ```

2. **cd /scratch/MyID**

3. **mkdir ./workDir**

4. **cd ./workDir**

5. **Linux/Mac user:**
   
   ```
 scp file MyID@xfer.gacrc.uga.edu:/scratch/MyID/workDir
   ```

   **Windows user:**
   
   ```
 scp file MyID@xfer.gacrc.uga.edu:/scratch/MyID/workDir
   ```

6. **nano ./sub.sh**

7. **$ qsub sub.sh**

8. **$ qstat me or qdel JobID**
qlogin Commands

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2 - How to open an interactive session

1. Type qlogin commands from Login node to open Interactive node:
   - `qlogin_intel`: Start an interactive session on an **Intel** node
   - `qlogin_amd`: Start an interactive session on an **AMD** node
   - `qlogin`: start an interactive job on either type of nodes

2. Type `exit` command to quit and back to Login node
GACRC Wiki [http://wiki.gacrc.uga.edu](http://wiki.gacrc.uga.edu)

Running Jobs: [https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2](https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2)

Monitoring Jobs: [https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2](https://wiki.gacrc.uga.edu/wiki/Monitoring_Jobs_on_Sapelo2)

Job Submission Queue: [https://wiki.gacrc.uga.edu/wiki/Job_Submission_Queues](https://wiki.gacrc.uga.edu/wiki/Job_Submission_Queues)

Software: [https://wiki.gacrc.uga.edu/wiki/Software](https://wiki.gacrc.uga.edu/wiki/Software)

Transfer File: [https://wiki.gacrc.uga.edu/wiki/Transferring_Files](https://wiki.gacrc.uga.edu/wiki/Transferring_Files)

Linux Command: [https://wiki.gacrc.uga.edu/wiki/Command_List](https://wiki.gacrc.uga.edu/wiki/Command_List)

Training: [https://wiki.gacrc.uga.edu/wiki/Training](https://wiki.gacrc.uga.edu/wiki/Training)

User Account Request: [https://wiki.gacrc.uga.edu/wiki/User_Accounts](https://wiki.gacrc.uga.edu/wiki/User_Accounts)
GACRC Support
https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593

➢ **Job Troubleshooting:**

Please tell us details of your question or problem, including but not limited to:

✓ Your user name
✓ Your job ID
✓ Your working directory
✓ The queue name and command you used to submit the job

➢ **Software Installation:**

✓ Specific name and version of the software
✓ Download website
✓ Supporting package information if have

Please note to make sure the correctness of datasets being used by your jobs!
GACRC Service Catalog

Services (11)

Account Creation
For a research group’s PI to request user accounts for group members on the GACRC computing systems.

Class Account Creation
For an instructor to request user accounts for students attending a course that will need to use GACRC computing systems.

Class Account Modification
For instructors to request changes to be made in previously requested class account.

Computing Lab Modification/Deletion

General Internal

General Support
Report issues and request help with GACRC systems, except for software installation requests and account/lab creation requests.

Lab Creation
For a research group’s PI to register a computing lab on the GACRC computing systems.

Modify/Delete Account
For PIs to request changes in or deletion of user accounts on GACRC computing systems.

Software Installation/Update
Request software and common application database (e.g. NCBI blast databases) installation and upgrade.
General Support

If you do not have a myID, please mail gacrc-help@uga.edu, and we will respond promptly.

The purpose of this form is to provide a method to report issues and to request help with GACRC systems.

Please use this form for all questions and support needs (e.g. to report issues, to troubleshoot jobs, to request resources or granting help, etc.) Please do not use this form for software installation requests or lab user account management, which all have separate forms.

Please refer to the GACRC documentation for information on GACRC resources, how to connect and transfer files, and how to run jobs, installed software list, training schedule, and a FAQ.

The link to this documentation is https://wiki.gacrc.uga.edu

This site is operated by Enterprise Information Technology Services (ETS) at the University of Georgia.
General Support

Report issues and request help with GACRC systems, except for software installation requests and account creation requests.

Short Description *

Email *

MyID *

Phone Number *

Support Needed For

- Galaxy
- Sapecsi
- Teaching Cluster
- Work Filesystem
- Home Filesystem
- Scratch Filesystem
- Project Filesystem
- XSE Nodes
- Other

Lab *
Appendix: Examples of Batch Serial/Threaded/MPI Job Scripts

https://wiki.gacrc.uga.edu/wiki/Sample_Scripts

• Components you need to run a job:
  ➢ **Software** already installed (cluster software or the one installed by yourself)
  ➢ **Job submission script** to
    1. specify computing resources:
       ✓ number of nodes and cores
       ✓ amount of memory
       ✓ maximum wallclock time
    2. load software using `ml load` (for cluster software)
    3. run any Linux commands you want to run, e.g., `pwd`, `mkdir`, `cd`, `echo`, etc.
    4. run the software
  ➢ **Input data** for analysis, if have

• Common queueing commands you need:
  ➢ `qsub`, `qstat_me`, `qstat`, `qdel`
  ➢ `qstat -f`, `showq`
Example 1: Serial job script running NCBI Blast+ using 1 CPU

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=1
#PBS -l mem=20gb
#PBS -l walltime=48:00:00

cd $PBS_O_WORKDIR
ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

time blastn [options] ...
```

- **#PBS -S /bin/bash**: Linux default shell (bash)
- **#PBS -q batch**: Queue name (batch)
- **#PBS -N testBlast**: Job name (testBlast)
- **#PBS -l nodes=1:ppn=1**: Number of nodes (1), number of cores (1), node feature is NOT needed!
- **#PBS -l mem=20gb**: Maximum amount of RAM memory (20 GB) is enforced by the cluster!
- **#PBS -l walltime=48:00:00**: Maximum wall-clock time (48 hours) for the job, default 6 minutes
- **cd $PBS_O_WORKDIR**: Compute node will use the directory from which the job is submitted as the working directory, i.e., /lustre1/MyID/workDir
- **ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14**: Load the module of ncbiblast+, version 2.6.0
- **time blastn [options] ...**: Run blastn with ‘time’ command to measure the amount of time it takes to run the application

https://wiki.gacrc.uga.edu/wiki/BLAST%2B-Sapelo2
*Example 2: Threaded job script running NCBI Blast+ using 4 CPUS*

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=4
#PBS -l mem=20gb
#PBS -l walltime=480:00:00
#PBS -M jsmith@uga.edu
#PBS -m ae
#PBS -j oe

cd $PBS_O_WORKDIR

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

time blastn -num_threads 4 [options] ...
```

- Number of nodes (1), number of cores (4)
- Email address to receive a notification for computing resources
- Send email notification when job aborts (a) or terminates (e)
- Standard error file (testBlast.e12345) will be merged into standard out file (testBlast.o12345)

```bash
#PBS -l walltime=480:00:00
#PBS -M jsmith@uga.edu
#PBS -m ae
#PBS -j oe

cd $PBS_O_WORKDIR

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

time blastn -num_threads 4 [options] ...
```

- Run blastn with 4 threads (-num_threads 4)
Example 3: MPI job script running RAxML using 2 full nodes

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testRAxML
#PBS -l nodes=2:ppn=28
#PBS -l walltime=120:00:00
#PBS -l mem=100gb

cd $PBS_O_WORKDIR

ml load RAxML/8.2.11-foss-2016b-mpi-avx

mpirun --np 50 raxmlHPC-MPI-AVX [options]
```

- Number of nodes (2), number of cores (28)
- Total cores requested = $2 \times 28 = 56$
- We suggest, Number of MPI Processes (50) ≤ Number of cores requested (56)
- To run raxmlHPC-MPI-AVX, MPI version using OpenMPI
- Run raxmlHPC-MPI-AVX with 50 MPI processes (--np 50), default 56
Guideline Tips

• Do NOT use Login node to run CPU/memory intensive tasks directly ➔ submit job to queue!

• Do NOT use Login Node to transfer data between your local computer and cluster ➔ use Transfer node!

• Do NOT use Home for storing job data ➔ use /scratch/MyID

• Do NOT park data in Scratch or Local Scratch ➔ clean up when job finished or exits from node

• Do NOT park data permanently in Project ➔ download data to your local drive

• NO large memory job running on batch queue ➔ use highmem_q

• NO small memory job running on highmem_q queue ➔ use batch

• In general, number of threads you want to run with a parallel job = number of cores (ppn) requested
Practical Tips

• **Each directory should not have too many files inside!** A rule of thumb would be to try to keep no more than a few tens of thousands of files (<10000 would be even better) in any single directory which is accessed frequently.

All files are in ONE single dir! ☠ Files are organized in subdirs! ✅
Thank You!

**TelephoneNumber Support**

EITS Help Desk: 706-542-3106  
Monday – Thursday: 7:30 a.m. – 7:30 p.m.  
Friday: 7:30 a.m. – 6 p.m.  
Saturday – Sunday: 1 p.m. – 7 p.m.  

**Georgia Advanced Computing Resource Center**

101-108 Computing Services building  
University of Georgia  
Athens, GA 30602  
https://gacrc.uga.edu/