
Table of Contents
1 Navigating and Understanding...1

1.1 Navigating the Univa Grid Engine System...1
1.1.1 Location of Univa Grid Engine Configuration Files and Binaries...................1
1.1.2 Displaying Status Information..6

1.1.2.1 Displaying Job Status Information..6
1.1.2.2 Understanding the Various Job States...6
1.1.2.3 Displaying Host Status Information...8
1.1.2.4 Understanding the Various Host States..9
1.1.2.5 Displaying Queue Status Information...11
1.1.2.6 Understanding the Various Queue States..11

1.2 Understanding a Default Installation...12
1.2.1 Default Queue...12
1.2.2 Default PE...13
1.2.3 Default User Set Lists..13
1.2.4 Default Host Group List...14
1.2.5 Default Complex Attributes..14

1.3 Understanding Key Univa Grid Engine Configuration Objects.............................15
1.3.1 The Cluster Configuration..15
1.3.2 The Scheduler Configuration...15
1.3.3 Host and Queue Configurations..16

1.4 Navigating the ARCo Database..16
1.4.1 Accessing the ARCo Database...16
1.4.2 Views to the Database...16

1.4.2.1 Accounting..17
1.4.2.1.1 view_accounting..17

1.4.2.2 Job related Information...18
1.4.2.2.1 view_job_log..18
1.4.2.2.2 view_job_times..19
1.4.2.2.3 view_jobs_completed..20

1.4.2.3 Advance Reservation Data...21
1.4.2.3.1 view_ar_attribute...21
1.4.2.3.2 view_ar_log..22
1.4.2.3.3 view_ar_resource_usage...22
1.4.2.3.4 view_ar_time_usage..22
1.4.2.3.5 view_ar_usage...23

1.4.2.4 Values Related to Univa Grid Engine Configuration Objects..............23
1.4.2.4.1 view_department_values...24
1.4.2.4.2 view_group_values..24
1.4.2.4.3 view_host_values..25
1.4.2.4.4 view_project_values..25
1.4.2.4.5 view_queue_values...26
1.4.2.4.6 view_user_values..27

i

Table of Contents
1 Navigating and Understanding

1.4.2.5 Statistics...27
1.4.2.5.1 view_statistic..27

1.4.3 Database Tables...28
1.4.3.1 Job Data and Accounting..29

1.4.3.1.1 sge_job..29
1.4.3.1.2 sge_job_log...30
1.4.3.1.3 sge_job_request..30
1.4.3.1.4 sge_job_usage..31

1.4.3.2 Advance Reservation Data...32
1.4.3.2.1 sge_ar..32
1.4.3.2.2 sge_ar_attribute...32
1.4.3.2.3 sge_ar_log...33
1.4.3.2.4 sge_ar_resource_usage..33
1.4.3.2.5 sge_ar_usage..33

1.4.3.3 Values Related to Univa Grid Engine Configuration Objects..............34
1.4.3.3.1 sge_department...34
1.4.3.3.2 sge_group..34
1.4.3.3.3 sge_host..34
1.4.3.3.4 sge_project..35
1.4.3.3.5 sge_queue...35
1.4.3.3.6 sge_user..35
1.4.3.3.7 sge_department_values..36
1.4.3.3.8 sge_group_values...36
1.4.3.3.9 sge_host_values..36
1.4.3.3.10 sge_project_values..37
1.4.3.3.11 sge_queue_values...37
1.4.3.3.12 sge_user_values..38

1.4.3.4 Sharetree Usage...38
1.4.3.4.1 sge_share_log...38

1.4.3.5 Statistics...39
1.4.3.5.1 sge_statistic...39
1.4.3.5.2 sge_statistic_values...39

1.4.3.6 dbwriter Internal Data...40
1.4.3.6.1 sge_checkpoint..40
1.4.3.6.2 sge_version...40

2 Common Tasks...41
2.1 Common Administrative Tasks in a Univa Grid Engine System...........................41

2.1.1 Draining Then Stopping the Cluster..41
2.1.2 Starting Up and Activating Nodes Selectively...42
2.1.3 Adding New Execution Hosts to an Existing Univa Grid Engine System....42

ii

Table of Contents
2 Common Tasks

2.1.4 Generate/Renew Certificates and Private Keys for Users...........................44
2.1.5 Backup and Restore the Configuration..45

2.1.5.1 Creating a Manual Backup...45
2.1.5.2 Automating the Backup Process...46
2.1.5.3 Restoring from a Backup..47

2.2 Managing User Access...48
2.2.1 Setting Up a Univa Grid Engine User..49
2.2.2 Administrators..49
2.2.3 Operators and Owners..50
2.2.4 User Access Lists and Departments...51

2.2.4.1 Commands to Add, Modify Delete Access Lists.................................51
2.2.4.2 Configuration Parameters of Access Lists..52

2.2.5 Projects..52
2.2.5.1 Commands to Add, Modify Delete Projects..52
2.2.5.2 Configuration Parameters of Projects...53

2.3 Understanding and Modifying the Cluster Configuration......................................53
2.3.1 Commands to Add, Modify, Delete or List Global and Local

 Configurations...53
2.3.2 Configuration Parameters of the Global and Local Configurations.............54

2.4 Understanding and Modifying the Univa Grid Engine Scheduler Configuration...55
2.4.1 The Default Scheduling Scheme...56

2.5 Configuring Properties of Hosts and Queues...58
2.5.1 Configuring Hosts..58

2.5.1.1 Local Cluster Configuration..58
2.5.1.2 Execution Host Configuration...59
2.5.1.3 Administrative and Submit Hosts..61
2.5.1.4 Grouping of Hosts...61
2.5.1.5 Example: Grouping Host-Groups in a Tree Structure.........................62

2.5.2 Configuring Queues...63
2.5.2.1 Example: Adding a New Queue, Showing the Queue

 Configuration and Deleting the Queue..64
2.5.2.2 Queue Configuration Attributes..65

2.5.2.2.1 Queue Limits..65
2.5.2.2.2 Queue Sequencing and Thresholds..66
2.5.2.2.3 Queue Checkpoints, Processing and Type...............................66
2.5.2.2.4 Queue Scripting...67
2.5.2.2.5 Queue Signals and Notifications..68
2.5.2.2.6 Queue Access Controls and Subordination...............................68
2.5.2.2.7 Queue Complexes...68
2.5.2.2.8 Queue Calendar and State..68

2.5.3 Utilizing Complexes and Load Sensors...69

iii

Table of Contents
2 Common Tasks

2.5.3.1 Configuring Complexes..69
2.5.3.1.1 Adding, Modifying and Deleting Complexes..............................69
2.5.3.1.2 Initializing Complexes..71
2.5.3.1.3 Using Complexes...72

2.5.3.2 Configuring Load Sensors..73
2.5.4 Advanced Attribute Configuration..73

2.5.4.1 Example: Modification of a Queue Configuration...............................74
2.6 Monitoring and Modifying User Jobs..75
2.7 Diagnostics and Debugging..76

2.7.1 Diagnosing Scheduling Behavior...76
2.7.2 Location of Logfiles and Interpreting Them...77
2.7.3 Turning on Debugging Information..78

2.7.3.1 Activating Scheduler Profiling...78
2.7.3.2 Activating Scheduler Monitoring...80

2.7.3.2.1 Find Reasons Why Jobs are Not Started..................................81
2.7.3.2.2 Enable Monitoring to Observe Scheduler Decisions.................81

2.7.3.3 Activate Debugging Output from the Command-Line and How to
 Interpret It..83

2.7.3.4 Using DTrace for Bottleneck Analysis..83

3 Special Activities..86
3.1 Tuning Univa Grid Engine for High Throughput...86

3.1.1 sge_qmaster Tuning..86
3.1.1.1 Setup Options...86
3.1.1.2 Configuration Options...86

3.1.2 Tuning Scheduler Performance...87
3.1.3 Reducing Overhead on the Execution Side...88

3.1.3.1 Local sge_execd Spooling..88
3.1.3.2 Switch off PDC..88

3.1.4 Choosing Job Submission Options..88
3.2 Tuning Univa Grid Engine for Large Parallel Applications....................................89

3.2.1 General Settings..89
3.2.1.1 Interactive Job Support...89
3.2.1.2 Accounting Summary..89

3.2.2 Tuning on the Execution Side..90
3.2.2.1 Tuning sge_execd..90
3.2.2.2 Reducing Impact of sge_execd on the Execution Host......................90

3.2.3 Job Related Tuning...91
3.3 Optimizing Utilization..91

3.3.1 Using Load Reporting to Determine Bottlenecks and Free Capacity..........91
3.3.2 Scaling the Reported Load..94

iv

Table of Contents
3 Special Activities

3.3.2.1 Example: Downscale load_short by a Factor of 10............................94
3.3.3 Alternative Means to Determine the Scheduling Order...............................95

3.3.3.1 Queue Sequence Number..95
3.3.3.1.1 Example: Defining the Queue Order..95
3.3.3.1.2 Example: Defining the Order on Queue Instance Level............96
3.3.3.1.3 Example: Antipodal Sequence Numbering of Queues..............97

3.4 Managing Capacities..97
3.4.1 Using Resource Quota Sets..97
3.4.2 Using Consumables..100

3.5 Implementing Preemption Logic...104
3.5.1 When to Use Preemption..104
3.5.2 Utilizing Queue Subordination...104

3.5.2.1 Example: Suspend all low priority jobs on a host whenever a job
 is running in the high priority queue..105

3.5.3 Advanced Preemption Scenarios..105
3.5.3.1 Example: Mixing exclusive high priority jobs with low priority jobs...106

3.6 Integrating Univa Grid Engine With a License Management System.................107
3.6.1 Integrating and Utilizing QLICSERVER...108

3.7 Managing Priorities and Usage Entitlements..109
3.7.1 Fair-Share (Share Tree) Ticket Policy...109

3.7.1.1 Halftime and Compensation Factor..112
3.7.2 Functional Ticket Policy...113
3.7.3 Override Ticket Policy..114
3.7.4 Urgency Policy...115

3.7.4.1 Wait Time Urgency...115
3.7.4.2 Deadline Urgency...115

3.7.4.2.1 Example...116
3.7.4.3 Resource-Dependent Urgencies..116

3.7.5 User Policy: POSIX Policy...117
3.7.5.1 Example..117

3.8 Advanced Management for Different Types of Workloads.................................118
3.8.1 Parallel Environments..118

3.8.1.1 Commands to Configure Parallel Environment Object.....................119
3.8.1.2 Configuration Parameters of Parallel Environments.........................119
3.8.1.3 Setup Parallel Environment for PVM Jobs..123
3.8.1.4 Submitting Parallel Jobs...124

3.8.2 Setting Up Support for Interactive Workloads...125
3.8.3 Setting Up Support for Checkpointing Workloads.....................................125

3.8.3.1 Commands to Configure Checkpointing Environments....................125
3.8.3.2 Configuration Parameters for Checkpointing Environments.............126

3.8.4 Enabling Reservations...128

v

Table of Contents
3 Special Activities

3.8.4.1 Reservation and Backfilling..128
3.8.4.2 Advance Reservation..130

3.8.5 Simplifying Job Submission Through the Use of Default Requests..........133
3.8.6 Job Submission Verifiers...134

3.8.6.1 Using JSVs for Ensuring Correctness of Job Submissions..............134
3.8.6.1.1 Locations to Enable JSV..135
3.8.6.1.2 JSV Language Support..136
3.8.6.1.3 JSV Script Interface Functions..137
3.8.6.1.4 Parameter Names of JSV Job Specifications..........................142

3.8.6.2 Using JSVs for Integrating Univa Grid Engine With Other
 Facilities..148

3.8.7 Enabling and Disabling Core Binding..148
3.8.7.1 Example: Enabling Core Binding on Host host1...............................149

3.8.8 The Univa Grid Engine Hadoop Integration...149
3.8.8.1 Brief Introduction to Apache Hadoop..149
3.8.8.2 Benefits of Using Hadoop with Univa Grid Engine...........................149
3.8.8.3 How Hadoop is Integrated with Univa Grid Engine...........................150
3.8.8.4 Installing the Hadoop Integration..150

3.8.8.4.1 Installation Prerequisites..151
3.8.8.4.2 Installing the Hadoop Integration Package..............................151
3.8.8.4.3 Verifying the Hadoop Integration...152
3.8.8.4.4 Troubleshooting the Hadoop Integration.................................153

3.9 Ensuring High Availability...153
3.9.1 Prerequisites..154
3.9.2 Installation...154
3.9.3 Testing sge_shadowd Takeover..154
3.9.4 Migrating the Master Host Back After a Takeover.....................................155
3.9.5 Tuning the sge_shadowd..155
3.9.6 Troubleshooting...156

3.9.6.1 How do I know which host is currently running sge_qmaster?.........156
3.9.6.2 Where do I find run time information of running shadow

 daemons?...156
3.9.6.3 Startup of sge_qmaster on a shadow host failed. Where do I find

 information for analyzing the problem?...156
3.10 Utilizing Calendar Schedules..156

3.10.1 Commands to Configure Calendars..156
3.10.2 Calendars Configuration Attributes..157
3.10.3 Examples to Illustrate the use of Calendars..159

3.11 Setting Up Nodes for Exclusive Use...159
3.12 Deviating from a Standard Installation..160

3.12.1 Utilizing Cells...160

vi

Table of Contents
3 Special Activities

3.12.2 Using Path Aliasing...161
3.13 Using CUDA Load Sensor..162

3.13.1 Building the CUDA load sensor...162
3.13.1.1 Example Makefile for building the CUDA load sensor....................163

3.13.2 Installing the load sensor...163
3.13.2.1 Add "cuda" complex value..163
3.13.2.2 Assign "cuda" complex value to CUDA-enabled nodes..................164
3.13.2.3 Install the load_sensor..164
3.13.2.4 Installation Test...164

3.13.3 Using the CUDA load sensor...164
3.14 Special Tools..165

3.14.1 The Loadcheck Utility..165
3.14.2 Utilities for BDB spooling...166

vii

1 Navigating and Understanding

1.1 Navigating the Univa Grid Engine System

Univa Grid Engine consists of different modules, which are usually distributed over a large
number of hosts. This chapter provides a high level overview of a Univa Grid Engine
installation, including details on where the execution binaries and configuration files are
located, how status information about different components and objects can be displayed,
and how they are interpreted.

1.1.1 Location of Univa Grid Engine Configuration Files and Binaries

To interact with a Univa Grid Engine, the client binaries and basic configuration parameters
must be available in the shell environment. To do the whole shell environment setup, simply
source a pre-defined shell script generated during the product installation. One major part of
the working environment is the $SGE_ROOT environment variable, which contains the full path
to the Univa Grid Engine installation. Using such environment variables allows interactions
with different Univa Grid Engine installations on the same host.

The following example assumes that Univa Grid Engine is installed in the /opt/UGE800
directory, and that the user works with bash. This example shows how the environment of
this particular installation is sourced in order to interact with the system.

> source /opt/UGE800/default/common/setting.sh

Within a C-shell the corresponding settings script must be sourced:

> source /opt/UGE800/default/common/setting.csh

TABLE: Environment Variables Set by the setting Script

Environment Variable Description

$SGE_ROOT The absolute path to the Univa Grid Engine product installation.

$ARCH
The Univa Grid Engine architecture string. It identifies the OS and
in some cases the processor architecture.

$SGE_CELL
The name of the Univa Grid Engine cell. The purpose of the cell
name is to distinguish different clusters, which are using the same
binary installation (and therefore having the same $SGE_ROOT).

$SGE_CLUSTER_NAME The system wide unique name of the Univa Grid Engine cluster.

$SGE_QMASTER_PORT Network port where the master daemon is listening.

$SGE_EXECD_PORT Network port where the execution daemons are listening.

1

$PATH
The default path variable is extended with the path to the Univa
Grid Engine binary directory.

$MANPATH
The manual pages path variable is extended in order to provide
command line access to the various Univa Grid Engine man
pages.

library path
Path to Univa Grid Engine libraries. Only set on architectures that
do not have a build-in run-path. The library path variable depends
on the OS type.

The following graphic illustrates the structure of the $SGE_ROOT directory.

2

3

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

FIGURE 1: Overview of the $SGE_ROOT Directory Structure
The main configuration files are located in the $SGE_ROOT/$SGE_CELL/common directory
(represented by the yellow files in Figure 1 above). Most of these files are generated
automatically when the configuration is changed by the corresponding Univa Grid Engine
administration command. The following table provides an overview of these files.

TABLE: Overview of Main Configuration Files

Configuration File Description

accounting
Contains accounting information about past jobs. The qacct
client reads this data.

bootstrap
Contains information about spooling and multithreading for
the qmaster.

configuration
Contains the current global cluster configuration, which can
be modified by the qconf -mconf command.

qtask The qtask configuration file (see man page qtask).

schedd_runlog
Contains information about a scheduling run, when it is
monitored (see qconf -tsm).

cluster_name Contains the unique cluster name.

sched_configuration
Contains the current scheduler configuration, which can be
modified by the qconf -tsm command.

sge_aliases The path aliasing configuration file.

shadow_masters Contains a list of shadow daemons.

local_conf/<hostname>
All files in this directory represent the local cluster
configuration for the specific host, and they can be modified
by the qconf -mconf <hostname> command.

During run-time, all scheduler decisions and status information are written to files (classic
spooling) or a database (BDB spooling), either of which is usually held on a secondary
storage (like fast SSDs, and/or hard drives). This is done so that, in case of problems, newly
started daemons can retrieve the current state and can immediately proceed with operation.
There are two types of spooling directories, one for the master daemon and one for the
execution daemon. The execution daemon spooling directories should point to a local
directory (and not a NFS shared directory) for the performance benefit. When shadow
daemon is configured, the master spooling directory must be shared with the shadow
daemon host; if not, the master spooling should also be held locally.

The following graphics illustrate the structure of the qmaster spooling directory (Figure 2) and
the execution daemon spooling directory (Figure 3):

4

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

5

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

FIGURE 2: Overview of the qmaster Spooling Directory
File:Execdspool.png
FIGURE 3: Overview of the Execution Host Spooling Directory
1.1.2 Displaying Status Information

Univa Grid Engine is a distributed system that handles and interacts with different entities like
jobs, hosts, and queues.

queues can have different states, depending on whether they are usable, non-usable,
or they are in any special mode (like maintenance).

•

With jobs, the states indicates things like if they are already started and when, if the
jobs are running or if they are in any special state (like the suspended state).

•

Hosts do not have an external state model, but they provide status information (like
CPU or memory usage).

•

This section describes how the states and the status for the different objects can be
displayed and how they are interpreted.

1.1.2.1 Displaying Job Status Information

After submitting a job, Univa Grid Engine handles the complete lifetime of the job and
expresses the condition of the job in various predefined job states. A job can have multiple
combined states, hence the total number of different job states is very high. Use the qstat
command to show job states:

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 13 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host2 1
 14 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host3 1
 15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 1
 15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 2
 15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 3
 15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 4
 15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 5
 15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 6
 12 0.60500 env daniel qw 05/24/2011 09:56:45 1

The job state is displayed in the state column. In this example, there are several jobs running
(r) and one job is pending (queue waiting, qw).

Other basic status information are the queue instance in which the job is running (queue),
the submit time (if the job is in the queued state) and the start time (if the job was dispatched
already to queue instances).

1.1.2.2 Understanding the Various Job States

Univa Grid Engine job states can be a combination of different states. For example, there are
different hold states that can be applied to jobs during submit time or afterwards, when they
are running. A hold state prevents a job from being considered during a scheduling run,

6

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

therefore it affects a running job only when it is rescheduled.

The following example illustrates the hold state in combination with other states:

Here a job is submitted with a user hold (-h):

> qsub -h -b y sleep 120
Your job 16 ("sleep") has been submitted

After submission, the job stays in the combined hold queued-waiting state.

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 16 0.00000 sleep daniel hqw 05/24/2011 10:33:17 1

If the hold is removed and the job was dispatched, it is in the running state. When then a user
hold for the job is requested, the qstat command shows the combined state hold running.

> qrls 16
modified hold of job 16

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 16 0.00000 sleep daniel qw 05/24/2011 10:33:17 1

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 16 0.55500 sleep daniel r 05/24/2011 10:34:37 all.q@SLES11SP1 1

> qhold 16
modified hold of job 16

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 16 0.55500 sleep daniel hr 05/24/2011 10:34:37 all.q@SLES11SP1 1

The following table provides an overview of the Univa Grid Engine job states, which can
occur alone or in combination with other states:

TABLE: Overview of Job States

State Description

r Running state. The job is running on the execution host.

t Job is in a transferring state. The job is sent to the execution host.

d The job is in a deletion state. The job is currently deleted by the system.

E The job is in an error state.

7

R The job was restarted.

T The job is in a suspended state because of threshold limitations.

w The job is in a waiting state.

h The job is in a hold state. The hold state prevents scheduling of the job.

S The job is in an automatic suspended state. The job suspension was triggered not
directly.

s The job is in a manual suspend state. The job suspension was triggered manually.

z The job is in a zombie state.

The graphic below illustrates a simple but common job state transition from queued-waiting
(qw), to transferring (t) and running (r). While running, the job switches to the suspended
state (s) and back.

FIGURE 4: Simple Job State Transition
1.1.2.3 Displaying Host Status Information

Status information of hosts can be displayed with the qhost command. Hosts themselves
have no pre-defined explicit states like jobs or queues. Depending on the internal host state,
the queue instances on that host change its state. When for example a host is not reachable
anymore, then all queue instances on that host go into the alarm state (a). Nevertheless
status information and host topology based information remain available. Examples of status
information are the architecture, the compute load, memory state. Examples of host topology
based information are the number of sockets, cores and hardware supported threads (the
latter on Linux and Solaris only).

Use the qhost command to show host status information, as in the following example:

> qhost
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--
global - - - - - - - - - -
tanqueray lx-amd64 2 1 2 2 0.27 7.7G 2.2G 0.0 0.0
unertl lx-amd64 1 1 1 1 0.00 997.5M 299.0M 2.0G 0.0

 Note
In order to get SGE 6.2u5 compatible output (without NSOC, NCOR, NTHR), use the -ncb
switch (e.g. qhost -ncb).

8

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

More detailed host status information can be shown with the -F argument. In addition to the
default qhost information, host-specific values (hl:) are also shown.

> qhost -F
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--
global - - - - - - - - - -
host1 lx-amd64 8 1 8 8 0.00 491.9M 51.9M 398.0M 0.0
 hl:arch=lx-amd64
 hl:num_proc=8.000000
 hl:mem_total=491.898M
 hl:swap_total=397.996M
 hl:virtual_total=889.895M
 hl:load_avg=0.000000
 hl:load_short=0.000000
 hl:load_medium=0.000000
 hl:load_long=0.000000
 hl:mem_free=439.961M
 hl:swap_free=397.996M
 hl:virtual_free=837.957M
 hl:mem_used=51.938M
 hl:swap_used=0.000
 hl:virtual_used=51.938M
 hl:cpu=0.000000
 hl:m_topology=SCCCCCCCC
 hl:m_topology_inuse=SCCCCCCCC
 hl:m_socket=1.000000
 hl:m_core=8.000000
 hl:m_thread=8.000000
 hl:np_load_avg=0.000000
 hl:np_load_short=0.000000
 hl:np_load_medium=0.000000
 hl:np_load_long=0.000000

1.1.2.4 Understanding the Various Host States

The following descriptions refer to the column headers output by the qhost command:

> qhost
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--

ARCH: The host architecture shown by the qhost command is either an abbreviation
of the operating system used on the execution host (e.g. aix51) or a combination of
the operating system and the processor architecture (e.g. sol-amd64).

•

NCPU: The number of CPUs for a system is determined by an operating system call.
In most cases, it is the number of available CPU cores on a system.

•

The next three entries are execution host topology related information and are only
available on Linux hosts (with a kernel version >= 2.6.16) and Solaris hosts.

NSOC: number of CPU sockets on the execution host®
NCOR: total number of compute cores on the execution host®
NTHR: hardware supported threads on the execution host®

•

9

LOAD: The machine load is the average length of the operating system run-queue
(runnable processes) in the last 5 minutes (on some operating systems, this may
differ). The source is the load value load_avg.

•

The current memory status is displayed in the MEMTOT and MEMUSE columns.
MEMTOT: total amount of memory®
MEMUSE: used memory®

•

Virtual memory specific information is shown in the SWAPTO and SWAPUS columns.
SWAPTO: total amount of swap space®
SWAPUS: used swap space®

•

 Note
Own host based load values can be added by declaring the load value name and typing in
the complex configuration (qconf -mc) and initializing the load value either in the execution
host configuration (qconf -me <hostname>) or by installing a load sensor at the
execution host.

The following table explains these additional standard load values.

TABLE: Additional Standard Load Values

State Description

arch The architecture string (usually contains the OS and optionally the ISA).

num_proc The number of detected processing units.

mem_total The total amount of installed memory.

swap_total The total amount of installed swap space.

virtual_total Total amount of virtual memory (memory + swap space).

load_avg Same as load_medium.

load_short Average load value in the last minute (time interval may differ on OS;
source on Linux is /proc/loadavg).

load_medium Average load value in the last 5 minutes (time interval may differ on OS;
source on Linux is /proc/loadavg).

load_long Average load value in the last 15 minutes (time interval may differ on OS;
source on Linux is /proc/loadavg).

mem_free The amount of unused memory.

swap_free The amount of unused swap space.

virtual_free The amount of unused virtual memory.

mem_used The amount of occupied memory.

swap_used The amount of occupied swap space.

virtual_used The amount of occupied virtual memory.

cpu Current amount of CPU usage.

m_topoloy Execution host topology information (S means socket, C core, and T
hardware supported thread).

10

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

m_topoloy_inuse Execution host topology like above. Additionally occupied (via core
binding) cores are displayed in lower case letters.

m_socket The number of CPU sockets.

m_core The total number of CPU cores.

m_thread The total number of hardware supported threads.

np_load_avg Medium average divided by number of processors (num_proc).

np_load_short Short load average divided by the the number of processors (num_proc).

np_load_medium Medium load average divided by the the number of processors
(num_proc).

np_load_long Long load average divided by the the number of processors (num_proc).
1.1.2.5 Displaying Queue Status Information

The qstat command shows queue status information.

Use the queue selection switch -q to show all queue instances of the all.q.

> qstat -q all.q -f
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/0/10 0.00 lx-amd64

all.q@host2 BIPC 0/0/10 0.08 lx-amd64

all.q@host3 BIPC 0/0/10 0.01 lx-amd64

1.1.2.6 Understanding the Various Queue States

The following table shows the different queue states, which can also occur in combination.

TABLE: Queue States

State Description

a Alarm state (because of load threshold or also when host is not reachable)

A Alarm state

u Unknown state: The execution daemon is not reachable.

C Calendar suspended

s Suspended

S Automatically suspended

d Manually disabled (qmod -d)

D Automatically disabled

E Error state

11

1.2 Understanding a Default Installation

These sections describe common parts of a default Univa Grid Engine installation. Topics
covered include the queue, parallel environment, user sets, host groups and complex
attributes.

1.2.1 Default Queue

All hosts are by default members of the queue all.q, where every installed execution host has
as many slots as the number of CPUs reported by the operating system. This default-queue
is configured to run batch, interactive and also parallel jobs with the C-Shell as default.

See Common_Tasks#Configuring_Queues for more information, such as how to change the
queue.

qconf -sq all.q
qname all.q
hostlist @allhosts
seq_no 0
load_thresholds np_load_avg=1.75
suspend_thresholds NONE
nsuspend 1
suspend_interval 00:05:00
priority 0
min_cpu_interval 00:05:00
processors UNDEFINED
qtype BATCH INTERACTIVE
ckpt_list NONE
pe_list make
rerun FALSE
slots 1,[host1=4],[host2=1],[host3=1],[host4=1]
tmpdir /tmp
shell /bin/csh
prolog NONE
epilog NONE
shell_start_mode posix_compliant
starter_method NONE
suspend_method NONE
resume_method NONE
terminate_method NONE
notify 00:00:60
owner_list NONE
user_lists NONE
xuser_lists NONE
subordinate_list NONE
complex_values NONE
projects NONE
xprojects NONE
calendar NONE
initial_state default
s_rt INFINITY
h_rt INFINITY
s_cpu INFINITY
h_cpu INFINITY
s_fsize INFINITY

12

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

h_fsize INFINITY
s_data INFINITY
h_data INFINITY
s_stack INFINITY
h_stack INFINITY
s_core INFINITY
h_core INFINITY
s_rss INFINITY
h_rss INFINITY
s_vmem INFINITY
h_vmem INFINITY

1.2.2 Default PE

There is also a pre-defined parallel-environment configured named make which is also
already added to the default queue. This pe utilizes at most 999 slots and allocates them with
round_robin as the allocation rule.

See User_Guide#Parallel_environments for more information on how to handle those parallel
environments.

qconf -sp make
pe_name make
slots 999
user_lists NONE
xuser_lists NONE
start_proc_args NONE
stop_proc_args NONE
allocation_rule $round_robin
control_slaves TRUE
job_is_first_task FALSE
urgency_slots min
accounting_summary TRUE

1.2.3 Default User Set Lists

By default, there are three different user set lists defined. arusers and deadlineusers are
access lists and defaultdepartment is a department.

All members of the arusers user set list and also the Univa Grid Engine operators and
managers are allowed to do advance reservations (User_Guide#Reservations).

All members of the deadlineusers user set list and also the Univa Grid Engine operators and
managers are allowed to submit deadline jobs.

See Common_Tasks#Managing_User_Access for more information.

qconf -sul
arusers
deadlineusers
defaultdepartment

13

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

1.2.4 Default Host Group List

@allhosts is the only pre-defined host group list. All hosts known at install time of the
Qmaster will be members of this host group list.

qconf -shgrpl
@allhosts

1.2.5 Default Complex Attributes

Many pre-defined complex attributes are available.

See Common_Tasks#Configuring_Complexes for additional information.

qconf -sc
#name shortcut type relop requestable consumable default urgency
#--
arch a RESTRING == YES NO NONE 0
calendar c RESTRING == YES NO NONE 0
cpu cpu DOUBLE >= YES NO 0 0
display_win_gui dwg BOOL == YES NO 0 0
h_core h_core MEMORY <= YES NO 0 0
h_cpu h_cpu TIME <= YES NO 0:0:0 0
h_data h_data MEMORY <= YES NO 0 0
h_fsize h_fsize MEMORY <= YES NO 0 0
h_rss h_rss MEMORY <= YES NO 0 0
h_rt h_rt TIME <= YES NO 0:0:0 0
h_stack h_stack MEMORY <= YES NO 0 0
h_vmem h_vmem MEMORY <= YES NO 0 0
hostname h HOST == YES NO NONE 0
load_avg la DOUBLE >= NO NO 0 0
load_long ll DOUBLE >= NO NO 0 0
load_medium lm DOUBLE >= NO NO 0 0
load_short ls DOUBLE >= NO NO 0 0
m_core core INT <= YES NO 0 0
m_socket socket INT <= YES NO 0 0
m_thread thread INT <= YES NO 0 0
m_topology topo RESTRING == YES NO NONE 0
m_topology_inuse utopo RESTRING == YES NO NONE 0
mem_free mf MEMORY <= YES NO 0 0
mem_total mt MEMORY <= YES NO 0 0
mem_used mu MEMORY >= YES NO 0 0
min_cpu_interval mci TIME <= NO NO 0:0:0 0
np_load_avg nla DOUBLE >= NO NO 0 0
np_load_long nll DOUBLE >= NO NO 0 0
np_load_medium nlm DOUBLE >= NO NO 0 0
np_load_short nls DOUBLE >= NO NO 0 0
num_proc p INT == YES NO 0 0
qname q RESTRING == YES NO NONE 0
rerun re BOOL == NO NO 0 0
s_core s_core MEMORY <= YES NO 0 0
s_cpu s_cpu TIME <= YES NO 0:0:0 0
s_data s_data MEMORY <= YES NO 0 0
s_fsize s_fsize MEMORY <= YES NO 0 0
s_rss s_rss MEMORY <= YES NO 0 0
s_rt s_rt TIME <= YES NO 0:0:0 0

14

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

s_stack s_stack MEMORY <= YES NO 0 0
s_vmem s_vmem MEMORY <= YES NO 0 0
seq_no seq INT == NO NO 0 0
slots s INT <= YES YES 1 1000
swap_free sf MEMORY <= YES NO 0 0
swap_rate sr MEMORY >= YES NO 0 0
swap_rsvd srsv MEMORY >= YES NO 0 0
swap_total st MEMORY <= YES NO 0 0
swap_used su MEMORY >= YES NO 0 0
tmpdir tmp RESTRING == NO NO NONE 0
virtual_free vf MEMORY <= YES NO 0 0
virtual_total vt MEMORY <= YES NO 0 0
virtual_used vu MEMORY >= YES NO 0 0

1.3 Understanding Key Univa Grid Engine Configuration
Objects

There are four key configuration objects that define the outline of a Univa Grid Engine cluster.

cluster configuration•
scheduler configuration•
host configurations•
queues•

Some of them are created and initialized during the installation process and some of them
have to be created after the installation to setup necessary policies in the cluster.

1.3.1 The Cluster Configuration

The cluster configuration is a configuration object that defines global aspects of the cluster
setup. Modification of this object requires manager privileges.

Certain settings of the global cluster configuration can be specified differently for individual
submit and execution hosts in a cluster. For these hosts a local configuration object can be
created. The local configuration object defines the parameters that should deviate from the
global configuration.

The available parameters of the global and local configuration can be found in the chapter
Understanding and Modifying the Cluster Configuration.

1.3.2 The Scheduler Configuration

All parameters influencing the scheduler component of Univa Grid Engine are summarized in
the scheduler configuration. Only managers of a Univa Grid Engine cluster are allowed to
change scheduler settings.

Scheduler configuration parameters are explained in in the chapter Understanding and
Modifying the Scheduler Configuration.

15

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

1.3.3 Host and Queue Configurations

Hosts and cluster queues define the execution environment where jobs will be executed. The
host configuration object defines aspects of an execution host. Cluster queues are used to
partition a group of hosts and to provide more detailed setting that jobs require to get
executed properly.

Read the section Configuration Properties of Hosts and Queues to get more information how
to setup and configure those objects.

1.4 Navigating the ARCo Database

1.4.1 Accessing the ARCo Database

Use a database frontend to access the ARCo database, e.g. a reporting tool, or spreadsheet.

During dbwriter installation, a user arco_read has been created having read access to the
ARCo database. This arco_read user should be used to connect a reporting tool to the ARCo
database.

The examples in the following sections use a PostgreSQL database and the psql command
line tool.

1.4.2 Views to the Database

To make querying data from the ARCo database easier, a number of views have been
created on the ARCo tables.

It is recommended to use these views where possible.

The following views are available:

Accounting
view_accounting: Accounting information per job.®

•

Job related information
view_job_log: The job logging.®
view_job_times: Timing information for jobs.®
view_jobs_completed: Number of jobs completed over time.®

•

Advance reservation data
view_ar_attribute: Attributes of advance reservations.®
view_ar_log: The AR log (state changes of an AR).®
view_ar_resource_usage: Resources requested by advance reservations.®
view_ar_time_usage: Reserved time vs. time actually used by slots.®
view_ar_usage: Timing information of advance reservations.®

•

Values related to Univa Grid Engine configuration objects•

16

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

view_department_values: Values related to departments.®
view_group_values: Values related to user groups.®
view_host_values: Values related to hosts.®
view_project_values: Values related to projects.®
view_queue_values: Values related to queue instances.®
view_user_values: Values related to users.®

Statistics
view_statistic: ARCo statistics.®

•

The following detailed view documentation is based on a PostgreSQL database. The
database structure is the same for all supported database systems, but with the attribute
types there are slight differences.

1.4.2.1 Accounting

1.4.2.1.1 view_accounting

The view_accounting gives basic accounting information for finished jobs. More detailed
information, e.g. the rusage (ru_*) attributes can be retrieved from the sge_job_usage table.

TABLE: Information Available from view_accounting

Attribute Type Description

job_number integer the job id

task_number integer the array task id

pe_taskid text the id of a task of a tightly integrated parallel job

name text the job name

group text the user group of the job owner (submitter)

username text the user name of the job owner (submitter)

account text the account string (see qsub -A option)

project text the project the job belongs to

department text the department the job owner belongs to

submission_time timestamp without
time zone the time when the job was submitted

ar_parent numeric(38,0) a reference to the advance reservation the job is
running in, see sge_ar table.

start_time timestamp without
time zone the time when the job (the array task) was started

end_time timestamp without
time zone the time when the job (the array task) finished

wallclock_time integer the job run time in seconds

cpu double precision the cpu time consumed in seconds

17

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

mem double precision the integral memory usage in GB seconds

io double precision the amount of data transferred in input/output
operations (available only on certain architectures)

iow double precision the io wait time in seconds (available only on
certain architectures)

maxvmem double precision the maximum vmem size in bytes

exit_status integer the exit status of the job
See also the man page accounting.5 for more information.

Example: How many job have been run and how much cpu time has been consumed during
the last hour, listed per user:

SELECT username, count(*) AS jobs, sum(cpu)
 FROM view_accounting
 WHERE end_time > date_trunc('hour', now())
 GROUP BY username
 ORDER BY username;

 username | jobs | cpu
----------+------+-----------
 joga | 175 | 10.612507
 sgetest | 181 | 4.792978
 sgetest1 | 186 | 4.956504
 sgetest2 | 276 | 7.054217

1.4.2.2 Job related Information

In addition to the accounting view, there are views showing more details of jobs, like the job
log, job timing information and a summary about finished jobs.

1.4.2.2.1 view_job_log

The job log shows detailed status information about the whole life cycle of a job, from job
submission to the job end.

TABLE: Information Available from the Job Log

Attribute Type Description

job_number integer the job id

task_number integer the array task id

pe_taskid text the id of a task of a tightly integrated parallel job

name text the job name

group text the user group of the job owner

username text the name of the job owner

account text the account string (see qsub -A option)

project text the project the job was running in

18

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

department text the department the job owner belongs to

time timestamp without
time zone the time when a job log event occurred

event text name of the job log event (e.g. pending, delivered,
finished)

state text the job state (e.g. r for running)

initiator text the initiator of the event, e.g. the name of the
operator who suspended the job

host text the host from which the event was triggered

message text a message describing the event
Example:

SELECT job_number, time, event, state, initiator, message
 FROM view_job_log
 WHERE job_number = 59708
 ORDER BY time;

 job_number | time | event | state | initiator | message
------------+---------------------+-------------+-------+------------------+--------------------------------
 59708 | 2011-05-24 12:02:17 | pending | | joga | new job
 59708 | 2011-05-24 12:02:35 | sent | t | master | sent to execd
 59708 | 2011-05-24 12:02:36 | delivered | r | master | job received by execd
 59708 | 2011-05-24 12:02:44 | suspended | r | joga |
 59708 | 2011-05-24 12:03:01 | unsuspended | r | joga |
 59708 | 2011-05-24 12:03:35 | finished | r | execution daemon | job exited
 59708 | 2011-05-24 12:03:35 | finished | r | master | job waits for schedds deletion
 59708 | 2011-05-24 12:03:35 | deleted | T | scheduler | job deleted by schedd

1.4.2.2.2 view_job_times

The view_job_times gives timing information about a job, like when a job was submitted,
started, finished as well as the job run time, the total turnaround time, and so on.

TABLE: Information Available from view_job_times

Attribute Type Description

job_number integer the job id

task_number integer the array task id, -1 for non array jobs

name text the job name

groupname text the user group of the job owner

username text the user name of the job owner

account text the account string (see qsub -A option)

project text the project the job was belonging to

department text the department the job owner belongs to

submission_time the job submission time

19

timestamp without
time zone

ar_parent numeric(38,0) reference to an advance reservation the job was
running in

start_time timestamp without
time zone the time when the job was started

end_time timestamp without
time zone the time when the job finished

wait_time interval the time between job submission and job start as
time interval (e.g. 00:00:10)

turnaround_time interval the total job turnaround time (time from job
submission until job end as time interval)

job_duration interval the job run time as time interval

wallclock_time integer the job run time in seconds

exit_status integer the exit status of the job
Example: Look for jobs that were pending more than 3 minutes before getting scheduled:

SELECT job_number, task_number, submission_time, wait_time, start_time, end_time
 FROM view_job_times
 WHERE wait_time > '00:03:00'
 ORDER BY wait_time;

 job_number | task_number | submission_time | wait_time | start_time | end_time
------------+-------------+---------------------+-----------------+---------------------+---------------------
 4732 | 34 | 2011-05-23 14:32:43 | 00:03:07 | 2011-05-23 14:35:50 | 2011-05-23 14:36:00
 4695 | -1 | 2011-05-23 14:28:49 | 00:03:08 | 2011-05-23 14:31:57 | 2011-05-23 14:32:12
 4732 | 35 | 2011-05-23 14:32:43 | 00:03:09 | 2011-05-23 14:35:52 | 2011-05-23 14:36:02
 4732 | 36 | 2011-05-23 14:32:43 | 00:03:17 | 2011-05-23 14:36:00 | 2011-05-23 14:36:10
 4732 | 37 | 2011-05-23 14:32:43 | 00:03:20 | 2011-05-23 14:36:03 | 2011-05-23 14:36:13
 4732 | 38 | 2011-05-23 14:32:43 | 00:03:28 | 2011-05-23 14:36:11 | 2011-05-23 14:36:21

1.4.2.2.3 view_jobs_completed

The view_jobs_completed shows the number of jobs finished per hour.

TABLE: Information Available from view_jobs_completed

Attribute Type Description

time timestamp without
time zone start time of a time interval

completed bigint number of jobs completed between time and time + 1
hour

ar_parent numeric(38,0) if advance reservations are used, the completed jobs are
listed per time interval and advance reservation

Example: Show number of jobs that completed during the last 24 hours, summed up per
hour:

20

SELECT *
 FROM view_jobs_completed
 WHERE time > date_trunc('day', now());

 time | completed | ar_parent
---------------------+-----------+-----------
 2011-05-24 01:00:00 | 2712 | 0
 2011-05-24 02:00:00 | 2715 | 0
 2011-05-24 03:00:00 | 2713 | 0
 2011-05-24 04:00:00 | 2712 | 0
 2011-05-24 05:00:00 | 2715 | 0
 2011-05-24 06:00:00 | 2712 | 0
 2011-05-24 07:00:00 | 2714 | 0
 2011-05-24 08:00:00 | 2713 | 0
 2011-05-24 09:00:00 | 2178 | 0
 2011-05-24 10:00:00 | 1574 | 0
 2011-05-24 10:00:00 | 3 | 1
 2011-05-24 11:00:00 | 1109 | 0
 2011-05-24 12:00:00 | 201 | 0

1.4.2.3 Advance Reservation Data

1.4.2.3.1 view_ar_attribute

The view_ar_attribute shows the basic attributes of an advance reservation.

TABLE: Information Available from view_ar_attribute

Attribute Type Description

ar_number integer the ar number

owner text the owner of the advance reservation

submission_time timestamp without
time zone the time when the ar was submitted

name text the name of the ar

account text the account string (see qrsub -A option)

start_time timestamp without
time zone the start time of the advance reservation

end_time timestamp without
time zone the end time of the advance reservation

granted_pe text name of a parallel environment which was granted
to the advance reservation

Example:

SELECT * FROM view_ar_attribute;

ar_number | owner | submission_time | name | account | start_time | end_time | granted_pe
-----------+-------+---------------------+------+---------+---------------------+---------------------+------------
 1 | joga | 2011-05-24 09:59:48 | | sge | 2011-05-24 10:30:00 | 2011-05-24 11:30:00 |

21

1.4.2.3.2 view_ar_log

TABLE: Information Available from view_ar_log

Attribute Type Description

ar_number integer the ar number

time timestamp without time zone time when the event logged occurred

event text type of the event

state text the state of the advance reservation

message text a message describing the event
Example:

SELECT * FROM view_ar_log;

 ar_number | time | event | state | message
-----------+---------------------+-----------------------+-------+--------------------------
 1 | 2011-05-24 09:59:48 | RESOURCES UNSATISFIED | W | AR resources unsatisfied
 1 | 2011-05-24 10:01:11 | RESOURCES SATISFIED | w | AR resources satisfied
 1 | 2011-05-24 10:30:00 | START TIME REACHED | r | start time of AR reached

1.4.2.3.3 view_ar_resource_usage

TABLE: Information Available from view_ar_resource_usage

Attribute Type Description

ar_number integer the ar number

variable text name of a resource requested by the ar

value text requested value of the named resource
Example:

SELECT * FROM view_ar_resource_usage;

 ar_number | variable | value
-----------+----------+-----------
 1 | arch | sol-amd64

1.4.2.3.4 view_ar_time_usage

The view_ar_time shows the time resources were held by an advance reservation vs. the
time these resources had actually been in use by jobs.

TABLE: Information Available from view_ar_time_usage

Attribute Type Description

ar_id numeric(38,0) the ar number

job_duration interval actual usage of the reserved resources by jobs

22

ar_duration interval duration (time interval) of the advance reservation
Example:

SELECT * FROM view_ar_time_usage;

 ar_id | job_duration | ar_duration
-------+--------------+-------------
 1 | 00:03:00 | 01:00:00

1.4.2.3.5 view_ar_usage

The view_ar_usage shows until when which queue instances (cluster queue on host) had
been in use by an advance reservation.

TABLE: Information Available from view_ar_usage

Attribute Type Description

ar_number integer the ar number

termination_time timestamp without time
zone time when the ar finished

queue text cluster queue name

hostname text host name

slots integer number of slots reserved on the named queue
instance

Example:

SELECT * FROM view_ar_usage;

 ar_number | termination_time | queue | hostname | slots
-----------+---------------------+-------+----------+-------
 1 | 2011-05-24 11:30:00 | all.q | hookipa | 1

1.4.2.4 Values Related to Univa Grid Engine Configuration Objects

Arbitrary values can be stored in the ARCo database related to the following Univa Grid
Engine configuration objects:

departments•
user groups•
hosts•
projects•
queues•
users•

Examples for values related to such objects are

load values of hosts•
license counters•

23

number of jobs completed per
department®
user®
project®

•

configured vs. free queue slots•
... and more.•

Object related values are valid for a certain time period, meaning they have a start and an
end time.

A number of views allows easy access to these values.

1.4.2.4.1 view_department_values

TABLE: Information Available from view_department_values

Attribute Type Description

department text name of the department

time_start timestamp without time
zone value is valid from time_start on

time_end timestamp without time
zone until time_end

variable text name of the variable

str_value text current value of the variable as string

num_value double precision current value of the variable as floating point
number

num_config double precision configured capacity of the value (for
consumables)

1.4.2.4.2 view_group_values

TABLE: Information Available from view_group_values

Attribute Type Description

groupname text name of the department

time_start timestamp without time
zone value is valid from time_start on

time_end timestamp without time
zone until time_end

variable text name of the variable

str_value text current value of the variable as string

num_value double precision current value of the variable as floating point
number

num_config double precision

24

configured capacity of the value (for
consumables)

1.4.2.4.3 view_host_values

TABLE: Information Available from view_host_values

Attribute Type Description

hostname text name of the host

time_start timestamp without time
zone value is valid from time_start on

time_end timestamp without time
zone until time_end

variable text name of the variable

str_value text current value of the variable as string

num_value double precision current value of the variable as floating point
number

num_config double precision configured capacity of the value (for
consumables)

Example: Show the average load per hour during the last day:

SELECT hostname, variable, time_end, num_value
 FROM view_host_values
 WHERE variable = 'h_load' AND time_end > date_trunc('day', now())
 ORDER BY time_end, hostname;

 hostname | variable | time_end | num_value
----------+----------+---------------------+----------------------
 halape | h_load | 2011-05-25 01:00:00 | 0.000465116279069767
 hapuna | h_load | 2011-05-25 01:00:00 | 0.0108707865168539
 hookipa | h_load | 2011-05-25 01:00:00 | 0.0738077368421051
 kahuku | h_load | 2011-05-25 01:00:00 | 0.0430645161290322
 kailua | h_load | 2011-05-25 01:00:00 | 0.00572881355932204
 kehena | h_load | 2011-05-25 01:00:00 | 0.000635838150289017
 rgbfs | h_load | 2011-05-25 01:00:00 | 0.092773
 rgbtest | h_load | 2011-05-25 01:00:00 | 0.0061759138888889
 halape | h_load | 2011-05-25 02:00:00 | 0
 hapuna | h_load | 2011-05-25 02:00:00 | 0.0101123595505618
...

1.4.2.4.4 view_project_values

TABLE: Information Available from view_project_values

Attribute Type Description

project text name of the project

25

time_start timestamp without time
zone value is valid from time_start on

time_end timestamp without time
zone until time_end

variable text name of the variable

str_value text current value of the variable as string

num_value double precision current value of the variable as floating point
number

num_config double precision configured capacity of the value (for
consumables)

1.4.2.4.5 view_queue_values

A queue value is related to a queue instance (cluster queue on a specific host).

TABLE: Information Available from view_queue_values

Attribute Type Description

qname text name of the cluster queue

hostname text name of the host

time_start timestamp without time
zone value is valid from time_start on

time_end timestamp without time
zone until time_end

variable text name of the variable

str_value text current value of the variable as string

num_value double precision current value of the variable as floating point
number

num_config double precision configured capacity of the value (for
consumables)

Example: Show the configured capacity for slots and the actually used slots per queue
instance over the last hour:

SELECT qname, hostname, time_end, variable, num_config, num_value
 FROM view_queue_values
 WHERE variable = 'slots' AND time_end > date_trunc('hour', now())
 ORDER BY time_end, hostname;

 qname | hostname | time_end | variable | num_config | num_value
-------+----------+---------------------+----------+------------+-----------
 all.q | rgbfs | 2011-05-25 08:00:01 | slots | 40 | 0
 all.q | rgbtest | 2011-05-25 08:00:01 | slots | 60 | 3
 all.q | hapuna | 2011-05-25 08:00:05 | slots | 10 | 0
 all.q | rgbtest | 2011-05-25 08:00:05 | slots | 60 | 4

26

 all.q | hapuna | 2011-05-25 08:00:13 | slots | 10 | 1
 all.q | rgbtest | 2011-05-25 08:00:14 | slots | 60 | 3
 all.q | rgbtest | 2011-05-25 08:00:16 | slots | 60 | 3
 all.q | rgbtest | 2011-05-25 08:00:16 | slots | 60 | 4
 all.q | rgbtest | 2011-05-25 08:00:19 | slots | 60 | 3
 all.q | rgbtest | 2011-05-25 08:00:19 | slots | 60 | 4

1.4.2.4.6 view_user_values

TABLE: Information Available from view_user_values

Attribute Type Description

username text name of the user

time_start timestamp without time
zone value is valid from time_start on

time_end timestamp without time
zone until time_end

variable text name of the variable

str_value text current value of the variable as string

num_value double precision current value of the variable as floating point
number

num_config double precision configured capacity of the value (for
consumables)

Example: Show the number of slots finished per hour and user for the last day:

SELECT username, time_end, num_value AS jobs_finished
 FROM view_user_values
 WHERE variable = 'h_jobs_finished' AND time_end > date_trunc('day', now())
 ORDER BY time_end, username;

 username | time_end | jobs_finished
----------+---------------------+---------------
 joga | 2011-05-25 01:00:00 | 247
 sgetest | 2011-05-25 01:00:00 | 245
 sgetest1 | 2011-05-25 01:00:00 | 246
 sgetest2 | 2011-05-25 01:00:00 | 245
 joga | 2011-05-25 02:00:00 | 249
 sgetest | 2011-05-25 02:00:00 | 246
 sgetest1 | 2011-05-25 02:00:00 | 245
 sgetest2 | 2011-05-25 02:00:00 | 245

1.4.2.5 Statistics

1.4.2.5.1 view_statistic

Shows statistical values. A statistic has a name and can comprise multiple variables and their
values over time.

TABLE: Information Available from view_statistic

27

Attribute Type Description

name text name of the statistic

time_start timestamp without time zone start time for validity of value

time_end timestamp without time zone end time for validity of value

variable text name of the variable

num_value double precision value of the variable
Example: Show the average processing speed of dbwriter per hour for the last day:

SELECT time_end AS time, num_value AS lines_per_second
 FROM view_statistic
 WHERE name = 'dbwriter' AND variable = 'h_lines_per_second'
 AND time_end > date_trunc('day', now())
 ORDER BY time_end;

 time | lines_per_second
---------------------+------------------
 2011-05-25 01:00:00 | 3730.85662575603
 2011-05-25 02:00:00 | 3590.4583316432
 2011-05-25 03:00:00 | 3669.95984348156
 2011-05-25 04:00:00 | 3797.30899245708
 2011-05-25 05:00:00 | 3659.50091748412
 2011-05-25 06:00:00 | 3727.94193461027
 2011-05-25 07:00:00 | 3582.6273350896
 2011-05-25 08:00:00 | 3687.65701312245

Example: Show daily values for the number of records in the sge_host_values table:

SELECT * FROM view_statistic
 WHERE name = 'sge_host_values' AND variable = 'd_row_count';

 name | time_start | time_end | variable | num_value
-----------------+---------------------+---------------------+-------------+-----------
 sge_host_values | 2011-05-23 00:00:00 | 2011-05-24 00:00:00 | d_row_count | 82356
 sge_host_values | 2011-05-24 00:00:00 | 2011-05-25 00:00:00 | d_row_count | 306459

1.4.3 Database Tables

The views described above are based on the raw data in the ARCo database tables.

The database tables have similar categories as the views:

Job data and accounting
sge_job:®
sge_job_log:®
sge_job_request:®
sge_job_usage:®

•

Advance reservation data
sge_ar:®

•

28

sge_ar_attribute:®
sge_ar_log:®
sge_ar_resource_usage:®
sge_ar_usage:®

Values related to Univa Grid Engine configuration objects
sge_department:®
sge_department_values:®
sge_group:®
sge_group_values:®
sge_host:®
sge_host_values:®
sge_project:®
sge_project_values:®
sge_queue:®
sge_queue_values:®
sge_user:®
sge_user_values:®

•

Sharetree Usage
sge_share_log:®

•

Statistics
sge_statistic:®
sge_statistic_values:®

•

dbwriter internal Data
sge_checkpoint:®
sge_version:®

•

The following detailed table documentation is based on a PostgreSQL database. The
database structure is the same for all supported database systems, but with the attribute
types there are slight differences.

1.4.3.1 Job Data and Accounting

1.4.3.1.1 sge_job

TABLE: Information Available from sge_job

Attribute Type Description

j_id numeric(38,0) not null internal sequential id

j_job_number integer the job number

j_task_number integer the array task number, -1 for sequential jobs

j_pe_taskid text the if of tasks of tightly integrated parallel
jobs, -1

j_job_name text the job name from qsub option -N

29

j_group text the name of the unix user group of the
submit user

j_owner text name of the submit user

j_account text account string from qsub option -A

j_priority integer the job priority set with qsub option -p

j_submission_time timestamp without time
zone the job submission time

j_project text the project the job is submitted into (qsub
option -P)

j_department text the department the job owner is assigned to
1.4.3.1.2 sge_job_log

TABLE: Information Available from sge_job_log

Attribute Type Description

jl_id numeric(38,0) not null

jl_parent numeric(38,0) reference to sge_job.j_id

jl_time timestamp without time
zone time stamp of the job log event

jl_event text name of the job log event (e.g. pending,
delivered, finished)

jl_state text the job state (e.g. r for running)

jl_user text the initiator of the event, e.g. the name of
the operator who suspended the job

jl_host text the host from which the event was triggered

jl_state_time integer time stamp of the event generation, might
be earlier than the jl_time

jl_message text a message describing the event
1.4.3.1.3 sge_job_request

TABLE: Information Available from sge_job_request

Attribute Type Description

jr_id numeric(38,0) not null internal id

jr_parent numeric(38,0) reference to sge_job.j_id

jr_variable text name of a complex variable requested by the job

jr_value text requested value

30

1.4.3.1.4 sge_job_usage

Holds job accounting data.

See also man page accounting.5 for details.

TABLE: Information Available from sge_job_usage

Attribute Type Description

ju_id numeric(38,0) not
null internal sequential id

ju_parent numeric(38,0) reference to sge_job.j_id

ju_curr_time timestamp without
time zone time when the accounting record got requested

ju_qname text cluster queue name in which the job was running

ju_hostname text name of the host the job was running on

ju_start_time timestamp without
time zone start time

ju_end_time timestamp without
time zone end time

ju_failed integer indicates job start failures

ju_exit_status integer the job exit status

ju_granted_pe text name of the parallel environment in case of parallel
jobs

ju_slots integer number of slots granted

ju_ru_wallclock integer job run time

ju_ru_utime double precision user cpu time consumed

ju_ru_stime double precision system cpu time consumed

ju_ru_maxrss integer

attributes delivered by the getrusage system call.
Depending on the operating system only certain
attributes are used. See man page getrusage.2 or
getrusage.3c.

ju_ru_ixrss

ju_ru_issmrss

ju_ru_idrss

ju_ru_isrss

ju_ru_minflt

ju_ru_majflt

ju_ru_nswap

ju_ru_inblock

ju_ru_outblock

ju_ru_msgsnd

31

ju_ru_msgrcv

ju_ru_nsignals

ju_ru_nvcsw

ju_ru_nivcsw

ju_cpu double precision the cpu time usage in seconds.

ju_mem double precision the integral memory usage in Gbytes cpu seconds.

ju_io double precision
the amount of data transferred in input/output
operations. Delivered only on certain operating
systems.

ju_iow double precision the io wait time in seconds. Delivered only on certain
operating systems.

ju_maxvmem double precision the maximum vmem size in bytes.

ju_ar_parent numeric(38,0)
default 0 reference to sge_ar.ar_id

1.4.3.2 Advance Reservation Data

1.4.3.2.1 sge_ar

TABLE: Information Available from sge_ar

Attribute Type Description

ar_id numeric(38,0) not null internal sequential id

ar_number integer AR number

ar_owner text owner of the advance reservation

ar_submission_time timestamp without time zone submission time of the AR
1.4.3.2.2 sge_ar_attribute

TABLE: Information Available from sge_ar_attribute

Attribute Type Description

ara_id numeric(38,0) not
null internal sequential id

ara_parent numeric(38,0) reference to sge_ar.ar_id

ara_curr_time timestamp without
time zone time stamp of the AR reporting

ara_name text name of the AR

ara_account text account string from qrsub -A option

ara_start_time timestamp without
time zone start time of the AR

ara_end_time end time of the AR

32

timestamp without
time zone

ara_granted_pe text
if a parallel environment was requested at AR
submission time, the name of the granted parallel
environment

1.4.3.2.3 sge_ar_log

TABLE: Information Available from sge_ar_log

Attribute Type Description

arl_id numeric(38,0) not null internal sequential id

arl_parent numeric(38,0) reference to sge_ar.ar_id

arl_time timestamp without time zone time stamp of the ar log event

arl_event text type of the event

arl_state text the state of the advance reservation

arl_message text a message describing the event
1.4.3.2.4 sge_ar_resource_usage

TABLE: Information Available from sge_ar_resource_usage

Attribute Type Description

arru_id numeric(38,0) not null internal sequential id

arru_parent numeric(38,0) reference to sge_ar.ar_id

arru_variable text name of a resource requested by the ar

arru_value text requested value of the named resource
1.4.3.2.5 sge_ar_usage

The sge_ar_usage table holds the information how many slots were reserved by an AR in
which queue instance.

TABLE: Information Available from sge_ar_usage

Attribute Type Description

aru_id numeric(38,0) not null internal sequential id

aru_parent numeric(38,0) reference to sge_ar.ar_id

aru_termination_time timestamp without time zone time when the reservation ended

aru_qname text cluster queue name

aru_hostname text host name

aru_slots integer number of slots reserved

33

1.4.3.3 Values Related to Univa Grid Engine Configuration Objects

The Univa Grid Engine object related tables hold minimal information about the following
configuration objects:

departments•
user groups•
hosts•
projects•
queues•
users•

Records are inserted as soon as they are needed, e.g. when load values are stored into the
ARCo database for an execution host, or when user related values are generated by derived
value rules.

1.4.3.3.1 sge_department

The sge_department table contains one record per department configured in Univa Grid
Engine.

TABLE: Information Available from sge_department

Attribute Type Description

d_id numeric(38,0) not null internal sequential id

d_department text the department name

1.4.3.3.2 sge_group

The sge_group table holds one record per Unix group name. New groups are generated as
needed when jobs get submitted with a new group name.

TABLE: Information Available from sge_group

Attribute Type Description

g_id numeric(38,0) not null internal sequential id

g_group text Unix group name

1.4.3.3.3 sge_host

The sge_host table holds the names of all execution hosts.

TABLE: Information Available from sge_host

Attribute Type Description

34

h_id numeric(38,0) not null internal sequential id

h_hostname text host name

1.4.3.3.4 sge_project

The sge_project table holds project names.

TABLE: Information Available from sge_project

Attribute Type Description

p_id numeric(38,0) not null internal sequential id

p_project text project name

1.4.3.3.5 sge_queue

The sge_queue table holds one record per queue instance.

TABLE: Information Available from sge_queue

Attribute Type Description

q_id numeric(38,0) not null internal sequential id

q_qname text cluster queue name

q_hostname text host name

1.4.3.3.6 sge_user

TABLE: Information Available from sge_user

Attribute Type Description

u_id numeric(38,0) not null internal sequential id

u_user text user name
For every Univa Grid Engine configuration object type stored in the ARCo database, there is
also a table storing name/value pairs that hold data related to a configuration object, such as
load values for execution hosts, consumable values for execution hosts or queues, values
calculated for users or projects by derived value rules.

The value tables all store the following:

timing information (start and end time for value validity)•
a variable name•
a configured capacity, only used for consumable resources•

35

the value of the variable during the reported time interval, can be a string value or a
numeric value

•

1.4.3.3.7 sge_department_values

The sge_department_values table holds name/values pairs related to departments.

TABLE: Information Available from sge_department_values

Attribute Type Description

dv_id numeric(38,0) not null internal sequential id

dv_parent numeric(38,0) reference to sge_department.d_id

dv_time_start timestamp without time
zone time interval for the validity of the reported

value
dv_time_end

dv_variable text variable name

dv_svalue text variable value for string variables

dv_dvalue double precision variable value for numeric variables

dv_dconfig double precision configured capacity for consumables
1.4.3.3.8 sge_group_values

The sge_group_values table holds name/values pairs related to Unix user groups.

TABLE: Information Available from sge_group_values

Attribute Type Description

gv_id numeric(38,0) not null internal sequential id

gv_parent numeric(38,0) reference to sge_group.d_id

gv_time_start timestamp without time
zone time interval for the validity of the reported

value
gv_time_end

gv_variable text variable name

gv_svalue text variable value for string variables

gv_dvalue double precision variable value for numeric variables

gv_dconfig double precision configured capacity for consumables
1.4.3.3.9 sge_host_values

The sge_host_values table holds name/values pairs related to execution hosts.

TABLE: Information Available from sge_host_values

Attribute Type Description

36

hv_id numeric(38,0) not null internal sequential id

hv_parent numeric(38,0) reference to sge_host.d_id

hv_time_start timestamp without time
zone time interval for the validity of the reported

value
hv_time_end

hv_variable text variable name

hv_svalue text variable value for string variables

hv_dvalue double precision variable value for numeric variables

hv_dconfig double precision configured capacity for consumables
1.4.3.3.10 sge_project_values

The sge_project_values table holds name/values pairs related to projects.

TABLE: Information Available from sge_project_values

Attribute Type Description

pv_id numeric(38,0) not null internal sequential id

pv_parent numeric(38,0) reference to sge_project.p_id

pv_time_start timestamp without time
zone time interval for the validity of the reported

value
pv_time_end

pv_variable text variable name

pv_svalue text variable value for string variables

pv_dvalue double precision variable value for numeric variables

dpv_dconfig double precision configured capacity for consumables
1.4.3.3.11 sge_queue_values

The sge_queue_values table holds name/values pairs related to queue instances.

TABLE: Information Available from sge_queue_values

Attribute Type Description

qv_id numeric(38,0) not null internal sequential id

qv_parent numeric(38,0) reference to sge_queue.q_id

qv_time_start timestamp without time
zone time interval for the validity of the reported

value
qv_time_end

qv_variable text variable name

qv_svalue text variable value for string variables

37

qv_dvalue double precision variable value for numeric variables

qv_dconfig double precision configured capacity for consumables
1.4.3.3.12 sge_user_values

The sge_user_values table holds name/values pairs related to user names.

TABLE: Information Available from sge_user_values

Attribute Type Description

uv_id numeric(38,0) not null internal sequential id

uv_parent numeric(38,0) reference to sge_user.u_id

uv_time_start timestamp without time zone time interval for the validity of the
reported valueuv_time_end

uv_variable text variable name

uv_svalue text variable value for string variables

uv_dvalue double precision variable value for numeric variables

uv_dconfig double precision configured capacity for consumables
1.4.3.4 Sharetree Usage

1.4.3.4.1 sge_share_log

TABLE: Information Available from sge_share_log

Attribute Type Description

sl_id numeric(38,0) not null

sl_curr_time timestamp without time zone

sl_usage_time timestamp without time zone

sl_node text

sl_user text

sl_project text

sl_shares integer

sl_job_count integer

sl_level double precision

sl_total double precision

sl_long_target_share double precision

sl_short_target_share double precision

sl_actual_share double precision

sl_usage double precision

38

sl_cpu double precision

sl_mem double precision

sl_io double precision

sl_ltcpu double precision

sl_ltmem double precision

sl_ltio double precision
Index:

 "sge_share_log_pkey" PRIMARY KEY, btree (sl_id)

1.4.3.5 Statistics

1.4.3.5.1 sge_statistic

TABLE: Information Available from sge_statistic

Attribute Type Description

s_id numeric(38,0) not null

s_name text
Index:

 "sge_statistic_pkey" PRIMARY KEY, btree (s_id)

Foreign Key Reference:

 TABLE "sge_statistic_values" CONSTRAINT "sge_statistic_values_sv_parent_fkey" FOREIGN KEY (sv_parent) REFERENCES sge_statistic(s_id)

1.4.3.5.2 sge_statistic_values

TABLE: Information Available from sge_statistic_values

Attribute Type Description

sv_id numeric(38,0) not null

sv_parent numeric(38,0)

sv_time_start timestamp without time zone

sv_time_end timestamp without time zone

sv_variable text

sv_dvalue double precision
Index:

 "sge_statistic_values_pkey" PRIMARY KEY, btree (sv_id)
 "sge_statistic_values_idx0" btree (sv_parent, sv_variable, sv_time_end)

39

Foreign Key Constraints:

 "sge_statistic_values_sv_parent_fkey" FOREIGN KEY (sv_parent) REFERENCES sge_statistic(s_id)

1.4.3.6 dbwriter Internal Data

1.4.3.6.1 sge_checkpoint

TABLE: Information Available from sge_checkpoint

Attribute Type Description

ch_id integer not null

ch_line integer

ch_time timestamp without time zone
Indexe:

 "sge_checkpoint_pkey" PRIMARY KEY, btree (ch_id)

1.4.3.6.2 sge_version

TABLE: Information Available from sge_version

Attribute Type Description

v_id integer not null

v_version text not null

v_time timestamp without time zone
Indexe:

 "sge_version_pkey" PRIMARY KEY, btree (v_id, v_version)

Go back to the Univa Grid Engine Documentation main page.

40

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

2 Common Tasks

2.1 Common Administrative Tasks in a Univa Grid Engine
System

The following sections describe tasks commonly performed in a Univa Grid Engine system,
including stopping a cluster, starting nodes, adding hosts, generating certificates, backing up
and restoring a cluster.

2.1.1 Draining Then Stopping the Cluster

There are different reasons to drain a cluster or parts of cluster during the daily work with
Univa Grid Engine. Old hosts that are removed from a cluster completely, service downtimes
of execution nodes or different software upgrades sometimes require that there are no
running jobs on corresponding hosts. Also major Univa Grid Engine updates might require
that there are no pending jobs in the cluster or that certain types of jobs using specific
features are not running. The easiest way to get rid of those jobs would be to delete them, but
the consequence of that approach is that the compute resources that where used by running
jobs in the past would be lost. The alternative is it to leave the jobs running until they end
themselves. The following examples describe scenarios that might help to find the best
solution for draining a cluster or parts of a cluster.

Host Replacement

No new jobs should be started on the host that is being replaced. To make the
scheduler aware of this, disable the corresponding queues.

•

 # qmod -d "*@<hostname>"

Jobs that are already running on that host can continue. The state of those jobs can
be observed with qstat.

•

 # qstat -s rs -l h=so02

Once there are no more running jobs, the execution daemon can be shut down.•

 # qconf -ke <hostname>

The host itself can now be shut down.•

Minor Univa Grid Engine Upgrade Stipulating Certain Job Types Not Run During the
Upgrade

Create or enhance a server JSV script to detect and reject the job types that are not
allowed in the system, and make this script active.

•

 # qconf -mconf

41

 ...
 jsv_url <jsv_path>
 ...

qstat, qstat -j in combination with some knowledge of the users' jobs will help
find running instances of jobs that were submitted in the past.

•

Once all running jobs finished, perform the upgrade.•

2.1.2 Starting Up and Activating Nodes Selectively

One way to upgrade a Univa Grid Engine system is it to use the backup/restore functionality
to set up a second, identical cluster. This is described in the section Updating with Two
Separate Clusters on the Same Resource Pool in the Installation Guide. If doing that upgrade
and not disabling the functionality of the old cluster, then two identical clusters will exist: the
initial one can still be used, and the second one can be tested before it is made active.
Compute resources can be disabled in the initial cluster selectively and enabled in the new
cluster.

Disable all queues in the new cluster.1.

 # qmod -d "*"

Deactivate old daemons, and activate compute resources in the new cluster.2.
Disable a subset of resources in the old cluster.®

 # qmod -d "*@<hostname>"
 # ...

Wait till jobs that are still running have finished.®
 # qstat -s rs -l h=<hostname>

Shutdown the execution daemon in the old cluster.®
 # qconf -ke <hostname>

Enable the host in the new cluster.®
 # qconf -e "*@<hostname>"

Make users aware that they can submit jobs into the new cluster.®
Continue with the previous step as long as there are enabled compute resources in
the old cluster.

3.

Now the old cluster can be uninstalled.4.

2.1.3 Adding New Execution Hosts to an Existing Univa Grid Engine
System

There are three cases for adding new execution hosts to the Univa Grid Engine:

The current system is not Windows-enabled and not running in CSP mode, and the
host to be added is not running Windows as operating system.
In this case simply follow the instruction of section Execution Host Installation of the
Installation Guide.

1.

42

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

The current system is CSP enabled or there are already Windows hosts in the cluster,
and the goal is to add an execution host running a Unix-based or Windows operating
system.
In this case certificate files need to be transferred before the system can be installed.
First execute the steps described in installation step Transfer Certificate Files and
Private Keys (Manually) in section Interactive Installation of the Installation Guide,
and then do the regular execution host installation described in Execution Host
Installation.

2.

The current system is not Windows-enabled and not running in CSP mode, and the
goal is to add a Windows host.
Then the system has to be Windows-enabled before it is possible to successfully
install and use the additional Windows host. Find further instructions below.

3.

To Windows-enable a Univa Grid Engine system after the qmaster installation has already
been done, execute the following steps.

Enable Windows Domain accounts.1.
This is done by adding enable_windomacc=true to the list of
execd_params:

®

 # qconf -mconf
 ...
 execd_params enable_windomacc=true, ...

Add Windows Administrator as a manager.2.
The windows Administrator user must also be an administrator for Univa Grid
Engine.

®

 # qconf -am <windows_admin_name>

Note that the name of the Administrator account might be different on any
given windows system.

®

Enable the security framework.3.

 # $SGE_ROOT/util/sgeCA/sge_ca -init -days 365

 Create user certificates.4.
If the master was installed with security enhancements (CSP) enabled, then
create certificates for the Windows Administrator.

®

 # $SGE_ROOT/util/sgeCA/sge_ca -user <windows_admin_name>

Make the new windows host an admin host.5.

 # qconf -ah <new_windowns_hosts>

Follow the steps:6.
Transfer Certificate Files and Private Keys (Manually) in section Interactive
Installation of the Installation Guide.

®

Then do a regular execution host installation on the new Windows host as
described in Execution Host Installation.

®

43

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

2.1.4 Generate/Renew Certificates and Private Keys for Users

Follow these steps for the easiest way to create required certificates and private keys for
those users that want to access a CSP secured Univa Grid Engine system:

Create a text with user entries.1.
Create a text file containing one line for each user that should get access to
the system.

®

Each line has three entries separated by colon character (:) -- UNIX
username, full name, email address.

®

 peter:Peter Yarrow:peter@univa.com
 paul:Paul Stookey:paul@univa.com
 mary:Mary Travers:mary@univa.com

Generate the files.2.
Execute the following command, and specify the created text file as a
parameter:

®

 # $SGE_ROOT/util/sgeCA/sge_ca -usercert <text_file>

Check the results.3.
Now the default location for user certificates will contain additional entries.®

 # ls -l /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL}/userkeys
 ...
 dr-x------ 2 peter staff 512 Mar 5 14:00 peter
 dr-x------ 2 paul staff 512 Mar 5 14:00 paul
 dr-x------ 2 mary staff 512 Mar 5 14:00 mary
 ...

Install the files.4.
Security related files have to be installed in the $HOME/.sge directory of each
user. Each user has to execute the following commands:

®

 # . $SGE_ROOT/default/common/settings.sh
 # $SGE_ROOT/util/sgeCA/sge_ca -copy
 Certificate and private key for user
 <username> have been installed

Renew existing certificates:

Change the number of days that certificates should be vaild.1.
Modify the file $SGE_ROOT/util/sgeCA/renew_all_certs.csh to do so.®

 # extend the validity of the CA certificate by
 set CADAYS = 365
 # extend the validity of the daemon certificate by
 set DAEMONDAYS = 365
 # extend the validity of the user certificate by
 set USERDAYS = 365

Renew the certificates.2.

 # util/sgeCA/renew_all_certs.csh

Replace old certificates.3.

44

The files in the directory /var/sgeCA/... need to be replaced. See the
execution host installation description for more details.

®

User certificates must also be replaced by each user (see section above).®

The following examples provide common tasks to display or check certificates:

To display a certificate:•

 # $SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -in ~/.sge/port/${SGE_QMASTER_PORT}${SGE_CELL}/certs/cert.pem -text

To check the issuer:•

 # $SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -issuer -in ~/.sge/port${SGE_QMASTER_PORT}${SGE_CELL}/certs/cert.pem -noout

To show validity:•

 # $SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -dates -in ~/.sge/port${SGE_QMASTER_PORT}${SGE_CELL}/certs/cert.pem -noout

To show the fingerprint:•

 # $SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -fingerprint -in ~/.sge/port${SGE_QMASTER_PORT}${SGE_CELL}/certs/cert.pem -noout

2.1.5 Backup and Restore the Configuration

During the backup process, all information concerning the configuration of a cluster is stored
in a tar-file that can later be used to restore the configuration. The backup saves
configuration objects like queues, parallel environments, global/local cluster configuration.
Then it saves important files located below $SGE_ROOT, but it does not save information
about pending or running jobs. Due to that, the jobs will not be restored during the restore
operation.

2.1.5.1 Creating a Manual Backup

To perform a backup manually, do the following steps.

Prepare the backup.1.
Log in to an admin host as user root or as admin user.®
Source the settings file.®

 # source $SGE_ROOT/default/common/settings.csh

Start the backup process.®
 # cd $SGE_ROOT
 # ./inst_sge -bup

Answer questions about the cluster.2.
Enter the installation location.®

 SGE Configuration Backup

45

 This feature does a backup of all configuration you made
 within your cluster.
 Please enter your SGE_ROOT directory.

Enter the cell name.®
 Please enter your SGE_CELL name.

Enter the backup destination directory.®
 Where do you want to save the backupfiles?

Should backup be compressed?®
 If you are using different tar versions (gnu tar/ solaris tar), this option
 can make some trouble. In some cases the tar packages may be corrupt.
 Using the same tar binary for packing and unpacking works without problems!

 Shall the backup function create a compressed tarpackage with your files? (y/n)

Enter the backup file name.®
 Please enter a filename for your backupfile.

 configuration
 sched_configuration
 accounting
 bootstrap
 qtask
 settings.sh
 act_qmaster
 sgemaster
 settings.csh
 ...
 local_conf/

 ... backup completed
 All information is saved in

Verify.3.
Verify that the backup file was created.®

2.1.5.2 Automating the Backup Process

The backup process can be automated. To do this, a backup template can be created. The
-auto command line parameter causes the backup script to read all backup parameters
from the template file instead of asking them interactively.

An example of a backup template can be found here:
$SGE_ROOT/util/install_modules/backup_template.conf:

 ##
 # Autobackup Configuration File Template
 ##

 # Please, enter your SGE_ROOT here (mandatory)
 SGE_ROOT=""

 # Please, enter your SGE_CELL here (mandatory)

46

 SGE_CELL=""

 # Please, enter your Backup Directory here
 # After backup you will find your backup files here (mandatory)
 # The autobackup will add a time /date combination to this dirname
 # to prevent an overwriting!
 BACKUP_DIR=""

 # Please, enter true to get a tar/gz package
 # and false to copy the files only (mandatory)
 TAR="true"

 # Please, enter the backup file name here. (mandatory)
 BACKUP_FILE="backup.tar"

The automated backup process can be started with the following command:

 inst_sge -bup -auto <backup_template>

There is no need to shut down the cluster during this operation.

2.1.5.3 Restoring from a Backup

The following steps are necessary to restore form a previous backup:

Prepare to restore.1.
Log in to an admin host as user root or as admin user.®
Source the settings file.®

 # source $SGE_ROOT/default/common/settings.csh

Start the backup process.®
 # cd $SGE_ROOT
 # ./inst_sge -rst
 SGE Configuration Restore

 This feature restores the configuration from a backup you made
 previously.

Answer questions about the cluster.2.
Enter the installation directory.®

 Please enter your SGE_ROOT directory.

Specify the cell name.®
 Please enter your SGE_CELL name.

Was compression enabled during the backup process?®
 Is your backupfile in tar.gz[Z] format?

Specify the location of the backup file.®
 Please enter the full path and name of your backup file

 configuration
 sched_configuration

47

 accounting
 bootstrap
 qtask
 settings.sh
 act_qmaster
 sgemaster
 settings.csh
 sgeexecd
 shadow_masters
 cluster_name
 jobseqnum
 advance_reservations/
 admin_hosts/
 ...
 local_conf/
 local_conf/su10.local

Shut down qmaster, if it is running.®
 Found a running qmaster on your masterhost: <qmaster_hostname>
 Please, check this and make sure, that the daemon is down during the restore!

 Shutdown qmaster and hit, <ENTER> to continue, or <CTRL-C> to stop
 the restore procedure!

To shut down the master, open a new terminal window and trigger the
shutdown before continuing with the restore.

®

 # qconf -km

Verify.3.
Verify the detected spooling method.®

 Spooling Method: classic detected!

 Your configuration has been restored

Restart qmaster as user root.®
Verify the Univa Grid Engine configuration.®

2.2 Managing User Access

In a system where CSP mode is enabled, by default only users who have the necessary
certificates and private keys have the right to submit and execute jobs in the Univa Grid
Engine system.

Restrictions might be setup by an existing Univa Grid Engine administrator. Access
restrictions can be setup in different Univa Grid Engine configuration objects to limit the
access to the cluster, certain hosts/queues, certain job types or commands.

To increase the permissions for a user, it might be possible to make this user the owner of
queues, make that user an operator or an administrator. After the installation of an Univa Grid
Engine system, the only administrator in a cluster is the admin user. Details are explained in
the sections below.

48

2.2.1 Setting Up a Univa Grid Engine User

To set up a user account for a Univa Grid Engine user that should be able to submit and
execute jobs in a cluster, address the following requirements:

The user needs a UNIX or Windows user account.•
The username has to be the same on all hosts that will be accessed by the user.•
It is also recommended that the user id and primary group id be the same on all hosts.•
The user id has to be greater or equal to the min_uid and the primary group id has to
be greater or equal to the min_gid so that the user has the ability to submit and
execute jobs in a cluster. Both parameters are defined in the global configuration and
have a value of 0 by default to allow root to run jobs, too.

•

In CSP enabled system, it is also necessary to take the steps described in section
Generate/Renew Certificate and Private Keys so that each user has access to a
certificate and private keyfile to be able to use commands to submit jobs.

•

Users need to be able to read the files in
$SGE_ROOT/$SGE_CELL/default/common, and it is recommended to have full
access to the directory referenced by $TMPDIR.

•

To access certain Univa Grid Engine functionalities, additional steps are required:

Advanced Reservations
Users are not allowed to create advanced reservations by default. This feature has to
be enabled by an administrator by adding the username to the arusers access list.

•

Deadline Jobs
To submit deadline jobs, users need to be able to specify the deadline initiation time.
This is only allowed if an administrator adds the user name to the deadlineusers
access list.

•

Access Lists
If access is additionally restricted in the cluster configuration, host configuration,
queues, projects or parallel environments through the definition of access list, then
users need to be added also to those access lists before access to corresponding
parts of the cluster will be granted. For example, to be able to add a user to the share
tree it is necessary to define that user in the Univa Grid Engine system. If projects are
used for the share tree definition, that user should be given access to one project,
otherwise the jobs of the user might be executed in the lowest possible priority class,
which might not be intended.

•

2.2.2 Administrators

Users that are administrators have full access to an Univa Grid Engine cluster. All
requirements that need to be fulfilled for regular users also apply to administrators.

The admin user that is defined during the installation process of the Univa Grid Engine
software is automatically an administrator. This user class can execute administrative
commands on administration hosts. Administrative commands are all the commands that
change configuration parameters in a cluster or that change the state of configuration objects.

49

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

In contrast to other administrators, the default admin user will also have file access to central
configuration files.

Commands to Manage Administrators

Administrators can be added, modified or listed with the following commands:

qconf -sm
Displays the list of all uses with administrator rights.

•

qconf -am <username>
Makes the specified user an administrator.

•

qconf -dm <username>
Deletes the specified user from the list of administrators.

•

2.2.3 Operators and Owners

Users that are defined as operators have the right to change the state of configuration objects
but they are not allowed to change the configuration of a Univa Grid Engine cluster. For
example, operators can enable or disable a queue, but not to change a configuration attribute
like slots of a queue instance.

The same permissions and restrictions apply to queue owners, except the state changes they
request will only be successful on those queues they own. Sometimes it makes sense to
make users the owners of the queue instances that are located on the workstation they
regularly work on. Then they can influence the additional workload that is executed on the
machine, but they cannot administrate the queues or influence queues on different host. In
combination with qidle command, it is for example possible to configure a workstation in a
way so that the Univa Grid Engine workload will only be done when the owner of the machine
is currently not working.

Commands to Manage Operators

Operators can be added, modified or listed with the following commands:

qconf -so
Displays the list of all uses with operator rights.

•

qconf -ao <username>
Makes the specified user an operator.

•

qconf -do <username>
Deletes the specified user from the list of operators.

•

Commands to Manage Queue Owners

The owner list of a queue is specified by the queue field owner_list. The field specifies a
comma separated list of login names of those users who are authorized. If it has the value
NONE, then only operators and administrators can trigger state changes of the
corresponding queue.

To modify or lookup the field value, use the following commands:

50

qconf -sq <queue_name>
Prints all queue fields to stdout of the terminal where the command is executed.

•

qconf -mq <queue_name>
Opens an editor so that queue fileds can be modified.

•

2.2.4 User Access Lists and Departments

User access lists are lists of user names that can be attached to configuration parameters of
the following objects.

Cluster Configuration•
Host•
Queue•
Projects•
Parallel Environment•

The configuration parameters with the name user_lists and acl define access lists of which
users will get access to the corresponding object, whereas the attributes with the name
xuser_lists and xacl will define the access lists for those users who will not get access. A user
that is referenced in both user_lists and xuser_lists or in both acl and xacl will not get access,
whereas when both lists are set to NONE anyone can access the corresponding object.

The term access has different meanings for the different objects. Denied access in the cluster
configuration means the user cannot use the whole cluster, whereas denied access to
parallel environments will cause the Univa Grid Engine scheduler to skip scheduling of
corresponding jobs when a user explicitly requests that parallel environment.

Note that access lists are also used as department in Univa Grid Engine. In contrast to
access lists, users can be part of only of one department. Departments are used in
combination with the function and override policy scheme.

The type field of an access list object defines if the corresponding object can be used as
department or only as access list.

2.2.4.1 Commands to Add, Modify Delete Access Lists

Access lists can be added, modified or listed with the following commands:

qconf -sul
Displays the names of all existing access lists.

•

qconf -dul <listname>
Deletes the access list with the given name.

•

qconf -au <user> <user> ... <listname>
Adds the specified users to the access list.

•

qconf -du <user> <user> ... <listname>
Deletes the specified user from the access list.

•

qconf -am <listname>
Opens an editor to modify the access list paramaters.

•

51

qconf -Au <filename>
Similar to -au with the difference that configuration is taken from file.

•

qconf -Mu<filename>
Similar to -mu with the difference that configuration is taken from file.

•

2.2.4.2 Configuration Parameters of Access Lists

Each access list object supports the following set of configuration attributes:

TABLE: Access List Configuration Attributes

Attribute Value Specification

name The name of the access list.

type
The type of the access list, currently one of ACL, or DEPT, or a combination of
both in a comma separated list. Depending on this parameter, the access list
can be used as access list only or as a department.

oticket The number of override tickets currently assigned to the department.

fshare The current functional shares of the department.

entries

The entries parameter contains the comma separated list of user names or
primary group names assigned to the access list or the department. Only a
user's primary group is used; secondary groups are ignored. Only symbolic
names are allowed. A group is differentiated from a user name by prefixing the
group name with a '@' sign.

When using departments, each user or group enlisted may only be enlisted in
one department, in order to ensure a unique assignment of jobs to departments.
For jobs without users who match any of the users or groups enlisted under
entries, the defaultdepartment is assigned, if existing.

2.2.5 Projects

Project objects are used in combination with the Univa Grid Engine policy scheme to express
the importance of a group of jobs submitted as part of that project compared to other jobs in
other projects. Details for the setup of the policy scheme can be found in section Managing
Priorities and Usage Entitlements of the Administration Guide. The following sections
describe the available commands and object attributes.

2.2.5.1 Commands to Add, Modify Delete Projects

Access lists can be added, modified or listed with the following commands:

qconf -aprj
Adds a new project.

•

qconf -Aprj <filename>
Adds a new project that is defined in the specified file.

•

qconf -dprj <project_name>
Deletes an existing project.

•

52

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

qconf -mprj<project_name>
Opens an editor so that the specified project can be modified.

•

qconf -Mprj <filename>
Modifies the project. New object configuration is taken from the specified file.

•

qconf -sprj
Shows the current configuration of the project.

•

qconf -sprjl
Shows all existing projects of an Univa Grid Engine cluster.

•

2.2.5.2 Configuration Parameters of Projects

Each project object supports the following set of configuration attributes:

TABLE: Project Configuration Attributes

Attribute Value Specification

name The name of the project.

oticket The number of override tickets currently assigned to the project.

fshare The current functional share of the project.

acl
A list of user access lists referring to those users being allowed to submit jobs to
the project. If set to NONE all users are allowed to submit to the project except
for those listsed in xacl.

xacl
A list of user access lists referring to those users that are not allowed to submit
jobs to the project.

2.3 Understanding and Modifying the Cluster Configuration

The host configuration attributes control the way a Univa Grid Engine cluster operates. These
attributes are set either globally through the global host configuration object, or in a local host
configuration object that overrides global settings for specific hosts.

2.3.1 Commands to Add, Modify, Delete or List Global and Local
Configurations

Global and local configurations can be added, modified, deleted or listed with the following
commands:

qconf -Aconf <filename>
Adds a new local configuration that is defined in the specified file.

•

qconf -Mconf <filename>
Modifies a local configuration that is defined in the specified file.

•

qconf -aconf <host>
Adds a new local configuration for the given host.

•

qconf -dconf <host>
Deletes an existing local configuration.

•

qconf -mconf <host> | global
Modifies an existing local or global configuration.

•

53

qconf -sconf <host> | global
Displays the global or local configuration.

•

qconf -sconfl <host> | global
Displays the list of existing local configurations.

•

2.3.2 Configuration Parameters of the Global and Local Configurations

The global object and each local configuration object support the following set of
configuration attributes. Note that the list is not complete. Find the full description in the man
page sge_conf(1).

TABLE: Project Configuration Attributes

Attribute Value Specification

execd_spool_dir The execution daemon spool directory.

mailer Absolute path to the mail delivery agent.

load_sensor
A comma separated list of executables to be started by
execution hosts to retrieve site configurable load
information.

prolog
epilog

Absolute path to executables that will be executed
before/after a Univa Grid Engine job.

shell_start_mode
Defines the mechanisms which are used to invoke the
job scripts on execution hosts.

min_uid
min_gid

Defines the lower bound on user/group IDs that may use
the cluster.

user_lists
xuser_lists

User access lists that define who is allowed access to
the cluster.

administrator_mail
List of mail addresses that will be used to send problem
reports.

project
xproject

Defines which projects are granted access and where
access will be denied.

load_report_time
The system load of execution hosts is periodically
reported to the master host. This parameter defines the
time interval between load reports.

reschedule_unkown
Determines whether jobs on execution hosts in an
unknown state are rescheduled and thus sent to other
hosts.

max_unheard

If the master host could not be contacted or was not
contacted by the execution daemon of a host for
max_unheard seconds, all queues residing on that
particular host are set to status unknown.

loglevel Defines the detail level for log messages.

max_aj_instances

54

This parameter defines the maximum number of array
tasks to be scheduled to run simultaneously per array
job.

max_aj_tasks
Defines the maximum number of tasks allowed for array
jobs. If this limit is exceeded, then the job will be rejected
during submission.

max_u_jobs
The number of active jobs each user can have in the
system simultaneously.

max_jobs The number of active jobs in the system.

max_advance_reservations
The maximum number of active advance reservations
allowed in Univa Grid Engine.

enforce_project
When set to true, users are required to request a project
during submission of a job.

enforce_user

When set to true, users must exist within the Univa Grid
Engine system before they can submit jobs. auto means
that the user will be automatically created during the
submission of the job.

auto_user_delete_time
auto_user_default_project
auto_user_fshare
auto_user_oticket

Defines different aspects for automatically created users.

gid_range
Comma separated list of range expressions specifying
additional group IDs that might be used by execution
daemons to tag jobs.

2.4 Understanding and Modifying the Univa Grid Engine
Scheduler Configuration

The Univa Grid Engine scheduler determines which jobs are dispatched to which resources.
It runs periodically in a pre-defined interval, but can also be configured so that additional
scheduling runs are triggered by job submission and job finishing events.

Crucial steps within a scheduler run are as follows:

Create the job order list out of the pending job list.•
Create a queue instance order list based on a load formula or a sequence numbering
schema (or both).

•

Dispatch the jobs (based on the job-order list) to the resources (based on the
queue-instance order list).

•

The scheduler configuration is a crucial part of each installation due to its influence on the
overall cluster-utilization, job-throughput, and master host load. Univa Grid Engine offers a
large set of variables, making the configuration very flexible.

Because this scheduler configuration section intersects with several other topics (such as the
policy configuration), it is recommended to read all of the following sections and man pages:

55

man sched_conf, man sge_priority and Managing Priorities and Usage
Entitlements.

2.4.1 The Default Scheduling Scheme

The scheduler configuration is printed with the qconf -ssconf command. Modify the
scheduler configuration with the editor configured in the $EDITOR environment variable with
the qconf -msconf command. The default configuration after a installation is shown below:

> qconf -ssconf
algorithm default
schedule_interval 0:0:10
maxujobs 0
queue_sort_method load
job_load_adjustments np_load_avg=0.15
load_adjustment_decay_time 0:7:30
load_formula np_load_avg
schedd_job_info false
flush_submit_sec 0
flush_finish_sec 0
params none
reprioritize_interval 00:00:40
halftime 168
usage_weight_list cpu=1.000000,mem=0.000000,io=0.000000
compensation_factor 5.000000
weight_user 0.250000
weight_project 0.250000
weight_department 0.250000
weight_job 0.250000
weight_tickets_functional 0
weight_tickets_share 0
share_override_tickets TRUE
share_functional_shares TRUE
max_functional_jobs_to_schedule 200
report_pjob_tickets TRUE
max_pending_tasks_per_job 50
halflife_decay_list none
policy_hierarchy OFS
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000
max_reservation 0
default_duration INFINITY

The scheduler parameters are explained in the table below:

TABLE: Scheduler Configuration Attributes

Attribute Value Specification

algorithm The algorithm can't be changed; it is default.

schedule_interval
Specifies at which time interval the scheduler is called.
The format is hours:minutes:seconds.

56

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

maxujobs

The maximum number of user jobs running at the
same time. Note: 0 indicates that there is no limit.
Since the advent of resource quota sets, configuring
the user limit there is preferred because of its superior
flexibility.

queue_sort_method

Defines in which way the queue instance list is sorted
(this implies the order of hosts) and matched against
the job list. The default parameter is load (i.e. the
load_formula is taken). Alternatively, seqno
determines that the order is based on the sequence
numbers of the queue instances, which is defined in
the queue configuration.

job_load_adjustment

Determines the load correction (additional artificial
load for the scheduler), that each job contributes to the
machine load values after the job was dispatched. This
avoids overloading a currently unloaded host by
dispatching too many jobs on it, because load
reporting is sluggish (right after scheduling, there is no
additional load).

load_adjustment_decay_time

The load adjustment is scaled linearly. This means
right after dispatching the job, the
job_load_adjustment adjusts the load value of the
resources with 100% influence. After a while the
influence is reduced linearly until
load_adjustment_decay_time is reached.

load_formula
When the queue_sort_method is set to load, this
formula describes how the load is derived. The default
is np_load_avg the normalized average load.

sched_jobinfo

If set to true, additional scheduling information can
be seen in the qstat -j output. The default value is
false, because is impacts the overall scheduler
performance in bigger clusters.

flush_submit_sec
If unequal to 0, it defines an additional scheduler run
that is performed the specified number of seconds
after a job was submitted.

flush_finish_sec
If unequal to 0, it defines an additional scheduler run
that is performed the specified number of seconds
after a job finishes.

params Additional parameters for the Univa Grid Engine
scheduler:

DURATION_OFFSET : assumed offset
between run-time of a job and the run-time
from scheduler perspective

•

PROFILE : 1 = turning run-time profiling on•

57

MONITOR : 1 = turning additional monitoring
on

•

PE_RANGE_ALG : alternative behavior when
selecting slots depending on a PE range

•

other parameters see Managing Priorities and Usage Entitlements

2.5 Configuring Properties of Hosts and Queues

Both hosts and queues offer a wide range of resources for jobs. While hosts are a common
physical concept, queues can be seen as job containers spanning across multiple hosts. A
specific queue on a specific host is called queue instance, which is a central element in Univa
Grid Engine. One host can be part of multiple queues. Resources can be defined on a host
level or on a queue level. This section describes the configuration of hosts and queues, as
well as the their intersection with complexes and load sensors.

2.5.1 Configuring Hosts

Univa Grid Engine hosts have two configurations: the local cluster configuration (also
called execution host local configuration) and the execution host configuration.

2.5.1.1 Local Cluster Configuration

The local cluster configuration can override values from the global cluster configuration
(qconf -sconf), to adapt them to the execution hosts' characteristics (like the path to the
mailer or xterm binary). The following table lists the commands used to alter the local cluster
configuration:

TABLE: Local Cluster Configuration

Attribute Value Specification

qconf -sconfl Shows all hosts with a local cluster configuration.

qconf -sconf
<hostlist>

Shows the local cluster configuration of hosts from the <hostlist>.

qconf -mconf
<hostlist>

Opens an editor and let the user configure the local cluster
configurations of hosts in the <hostlist>.

qconf -Mconf
<hostlist>

Modifies the local configuration

qconf -aconf
<hostlist>

Adds new local cluster configurations to hosts given by a host list.

qconf -Aconf
<filelist>

Adds new local cluster configurations to hosts given by a file list

qconf -dconf
Deletes the local cluster configuration of the host given by the
host list.

The following attributes can be used for overriding the global cluster configuration:

58

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

execd_spool_dir•
mailer•
xterm•
load_sensor•
prolog•
epilog•
load_report_time•
rescheduler_unknown•
shepherd_cmd•
gid_range•
execd_params•
qlogin_daemon•
qlogin_command•
rlogin_daemon•
rlogin_command•
rsh_daemon•
rsh_command•
libjvm_path•
additional_jvm_args•

More details about these attributes can be found in the man page sge_conf and in the
section Understanding and Modifying the Cluster Configuration.

2.5.1.2 Execution Host Configuration

The execution host configuration is modified with qconf -me <hostname>. Scripts
should call qconf -Me <filename>, which allows changes to the configuration based on a
given file. The configuration can be shown with qconf -se <hostname>. The following
table illustrates the configuration host attributes.

TABLE: Execution Host Configuration

Attribute Value Specification

qconf -ae
[<template>]

Adds a new execution host configuration, optionally based on a
configuration template.

qconf -Ae
<filelist>

Adds an execution host configuration based on a file.

qconf -de
<hostlist>

Deletes execution host configuration based on the given host
list.

qconf -me
<hostname>

Modifies the execution host configuration of the host given by
the hostname.

qconf -Me
<filename>

Modifies an execution host given based on a configuration file.

qconf -se
<hostname>

Shows the execution host configuration of the given host.

The following is an example of an execution host configuration:

59

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

> qconf -se macsuse
hostname macsuse
load_scaling NONE
complex_values NONE
load_values arch=lx-amd64,num_proc=1,mem_total=1960.277344M, \
 swap_total=2053.996094M,virtual_total=4014.273438M, \
 load_avg=0.280000,load_short=0.560000, \
 load_medium=0.280000,load_long=0.320000, \
 mem_free=1440.257812M,swap_free=2053.996094M, \
 virtual_free=3494.253906M,mem_used=520.019531M, \
 swap_used=0.000000M,virtual_used=520.019531M, \
 cpu=2.900000,m_topology=SC,m_topology_inuse=SC, \
 m_socket=1,m_core=1,m_thread=1,np_load_avg=0.280000, \
 np_load_short=0.560000,np_load_medium=0.280000, \
 np_load_long=0.320000
processors 1
user_lists NONE
xuser_lists NONE
projects NONE
xprojects NONE
usage_scaling NONE
report_variables NONE

Execution Host Configuration Fields:

The hostname field denotes the name of the host.•
With load_scaling, load values can be transformed. This can be useful when
standardizing load values based on specific host properties (e.g. number of CPU
cores). More information and examples about load scaling are in the Special Activities
Guide in section Scaling the Reported Load.

•

The complex_values field is used to configure host complexes. More details about
this field are described in the Utilizing Complexes and Load Sensors.

•

The load_values and the processors field are read-only, and they can only be
seen with qconf -se <hostname>. these fields are not available when the
execution host configuration is modified.

•

The usage_scaling provides the same functionality as load_scaling, but with
the difference that it can only be applied to the usage values mem, cpu, and io.
When no scaling is given, the default scaling factor (1) is applied.

•

Access control can be configured on user and project level.
user_lists and xuser_lists contain a comma-separated list of access
lists (see also man access_lists. The default value of both fields is NONE,
which allows any user access to this host. If access lists are configured in
user_lists, only users within this list (but not listed in xusers_lists),
have access to the host.

®

All users in the access lists of xusers_list have no access.®
Inclusion and exclusion of jobs based on the projects they are associated with
is configured in the projects and xprojects field. They contain a
comma-separated list of projects that are allowed or disallowed on the specific
host. By default (both values NONE), all projects are allowed. If a project is
listed in both lists, access is disallowed for all jobs of this project.

®

•

The report_variables field contains a list of load values that are written in the
reporting file each time a load report is sent from the execution daemon to the
qmaster process.

•

60

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

2.5.1.3 Administrative and Submit Hosts

Univa Grid Engine allows the administrator to control from which hosts it is allowed to submit
jobs, and which hosts can be used for administrative tasks, such as changing configurations.

The following table shows all commands used for configuring the administrative host list.

TABLE: Admin Host Configuration

Attribute Value Specification

qconf -ah
<hostnamelist>

Adds one or more host to the administrative host list.

qconf -dh
<hostnamelist>

Deletes one or more hosts from the list of administrative
hosts.

qconf -sh Show all administrative hosts.
Submit hosts are configured in a similar way. The following table shows the commands used
for configuring the submission host list.

TABLE: Submission Host Configuration

Attribute Value Specification

qconf -as <hostnamelist> Adds one or more host to the submit host list.

qconf -ds <hostnamelist> Deletes one or more hosts from the list of submit hosts.

qconf -ss Show all submits hosts.
2.5.1.4 Grouping of Hosts

To simplify the overall cluster configuration, Univa Grid Engine hosts can be arranged with
the host-group feature. Host-groups allow the administrator and the user to identify a group of
hosts just with a single name. To differentiate host names from host-group names,
host-group names always start with the @ prefix.

TABLE: Host Group Configuration

Attribute Value Specification

qconf -ahgrp <group>
Adds a new host group entry with the name
<group> and opens an editor for editing.

qconf -Ahgrp <filename>
Adds a new host group entry with the configuration
based on the file <filename>.

qconf -dhgrp <group> Deletes the host group with the name <group>.

qconf -mhgrp <group>
Modifies the host group <group> in an interactive
editor session.

61

qconf -Mhgrp <filename>
Modifies a host group based on a configuration file
<filname>.

qconf -shgrp <group>
Shows the configuration of the host-group
<group>.

qconf -shgrp_tree <group>
Shows the host-group <group> with sub-groups in
a tree structure.

qconf -shgrp_resolved <group> Shows the host-group with an resolved host-list.

qconf -shgrpl Shows a list of all host-groups.
An host-group configuration consists of two entries:

The group_name, that must be a unique name with an "@" prefix•
A hostlist, that can contain host-names and/or other host-group names. Having
host-group names in the hostlist allows one to structure the hosts within a tree. The
following example points this out.

•

2.5.1.5 Example: Grouping Host-Groups in a Tree Structure

In the first step, the lowest host-groups with real host-names must be added:

> qconf -ahgrp @lowgrp1
group_name @lowgrp1
hostlist host1

> qconf -ahgrp @lowgrp2
group_name @lowgrp2
hostlist host2

> qconf -ahgrp @lowgrp3
group_name @lowgrp3
hostlist host3

> qconf -ahgrp @lowgrp4
group_name @lowgr4
hostlist host4

Now the mid-level groups can be defined:

> qconf -ahgrp @midgrp1
group_name @midgrp1
hostlist @lowgrp1 @lowgrp2

> qconf -ahgrp @midgrp2
group_name @midgrp2
hostlist @lowgrp3 @lowgrp4

In a final step, the highest host-group is added:

> qconf -ahgrp @highgrp
group_name @highgrp
hostlist @midgrp1 @midgrp2

62

Show the tree:

> qconf -shgrp_tree @highgrp
@highgrp
 @midgrp1
 @lowgrp1
 host1
 @lowgrp2
 host2
 @midgrp2
 @lowgrp3
 host3
 @lowgrp4
 host4

The resolved host-list looks like the following:

> qconf -shgrp_resolved @highgrp
host1 host2 host3 host4

2.5.2 Configuring Queues

Queues are job-containers that are used for grouping jobs with similar characteristics.
Additionally, with queues, priority-groups can be defined with the subordination mechanism.
A queue must have a unique queue name that is set with the qname attribute, and span over
a defined set of hosts (hostlist). The hostlist can contain none for no host, @all for all
hosts, or a list of hostnames and/or host group names. The following table gives an overview
over the queue configuration commands.

TABLE: Queue Configuration Commands

Attribute Value Specification

qconf -aq [qname] Adds a new queue.

qconf -Aq <filename>
Adds a new queue based on the configuration given by the
file filename.

qconf -cq <queuelist>
Cleans a queue from jobs. The queues are given in the
<queuelist>.

qconf -dq <queuelist>
Deletes one or more queues. The name of queues are
given in the <queuelist>.

qconf -mq <hostname> Displays an editor for modifying a queue configuration.

qconf -Mq <filename>
Modifies a queue configuration based on a configuration
file.

qconf -sq <queuelist>
Shows the queue configuration for one or more queues. If
no parameter is given, a queue template is shown.

qconf -sql Shows a list of all configured queues.

63

2.5.2.1 Example: Adding a New Queue, Showing the Queue Configuration and Deleting
the Queue

> qconf -aq new.q
 qname new.q
 hostlist @allhosts
 ...
 (closing the vi editor with CTRL-ZZ)
 daniel@tanqueray added "new.q" to cluster queue list

> qconf -sq new.q
qname new.q
hostlist @allhosts
seq_no 0
load_thresholds np_load_avg=1.75
suspend_thresholds NONE
nsuspend 1
suspend_interval 00:05:00
priority 0
min_cpu_interval 00:05:00
processors UNDEFINED
qtype BATCH INTERACTIVE
ckpt_list NONE
pe_list make
rerun FALSE
slots 1
tmpdir /tmp
shell /bin/csh
prolog NONE
epilog NONE
shell_start_mode posix_compliant
starter_method NONE
suspend_method NONE
resume_method NONE
terminate_method NONE
notify 00:00:60
owner_list NONE
user_lists NONE
xuser_lists NONE
subordinate_list NONE
complex_values NONE
projects NONE
xprojects NONE
calendar NONE
initial_state default
s_rt INFINITY
h_rt INFINITY
s_cpu INFINITY
h_cpu INFINITY
s_fsize INFINITY
h_fsize INFINITY
s_data INFINITY
h_data INFINITY
s_stack INFINITY
h_stack INFINITY
s_core INFINITY
h_core INFINITY
s_rss INFINITY

64

h_rss INFINITY
s_vmem INFINITY
h_vmem INFINITY

> qconf -dq new.q
daniel@tanqueray removed "new.q" from cluster queue list

2.5.2.2 Queue Configuration Attributes

The queue configuration involves a spectrum of very different settings. For more detailed
information, see man queue_conf.

2.5.2.2.1 Queue Limits

The queue configuration allows one to define a wide range of limits. These limits (by default,
INFINITY) limit the following parameters of a job running in this particular queue:

runtime (h_rt/s_rt)•
CPU time (h_cpu/s_cpu)•
number of written disc blocks (h_fsize/s_fsize)•
data segment size (h_data/s_data)•
stack size (h_stack/s_stack)•
maximum core dump file size (h_core/s_core)•
resident set size (h_rss/s_rss)•
virtual memory size (h_vmem/s_vmem)•

All limits are available as soft and hard limit instances (prefix s_ and h_).

The following table shows the meaning of the different limits:

TABLE: Queue Resource Limits

Attribute Value Specification

h_rt
Limits the real time (wall clock time) the job is running. If a
job runs longer than specified a SIGKILL signal is sent to
the job.

s_rt

The soft real time limit (wall clock time limit) warns a job
with a catchable SIGUSER1 signal, if exceeded. After a
defined time period (see notify parameter), the job is
killed.

h_cpu

Limits the CPU time of a job. If a job needs more CPU time
than specified, then the job is signaled with a SIGKILL. In
case of parallel jobs, this time is multiplied by the number
of granted slots.

s_cpu

Limits the CPU time of a job. If a job needs more CPU time
than specified, then the job is signaled with SIGXCPU,
which can be caught by the job. In case of parallel jobs,
this time is multiplied by the number of granted slots.

65

h_vmem
The virtual memory limit limits the total amount of
combined memory usage of all job processes. If the limit is
exceeded a SIGKILL is sent to the job.

s_vmem

The virtual memory limit limits the total amount of
combined memory usage of all job processes. If the limit is
exceeded a SIGXCPU is sent, which can be caught by the
job.

h_fsize, s_fsize,
h_data, s_data,
h_stack, s_stack,
h_core, s_core, h_rss,
s_rss

These limits have the semantic of the setrlimit system
call of the underlaying operating system.

2.5.2.2.2 Queue Sequencing and Thresholds

The seq_no field denotes the sequence number the queue (or the queue instances) has
when the queue sort method of the scheduler configuration is based on sequence numbers.
More information can be found in the scheduler configuration section.

With load_thresholds is possible to define when an overloaded queue instance is set to
the alarm state. This state prevents more jobs from being scheduled in this overloaded
queue instance.

suspend_thresholds defines the thresholds until the queue is set into a suspended state.
The default value is NONE (no threshold). If suspend thresholds are defined, and one of the
thresholds is exceeded, within the next scheduling run, a pre-defined number of jobs running
in the queue are suspended. The number of suspended jobs is defined in the nsuspend
field. The suspend_interval field denotes the time interval until the next nsuspend
number of jobs are suspended, in case one of the suspend thresholds remains exceeded.

2.5.2.2.3 Queue Checkpoints, Processing and Type

The priority value specifies at which operating system process priority value the jobs are
started. The possible range for priority (also called nice values) is from -20 to 20, where -20
is the highest priority and 20 the lowest priority. This value only has effect when dynamic
priority values are turned off (i.e. reprioritize is false in the global cluster configuration).

The min_cpu_interval defines the time interval between two automatic checkpoints.
Further information about checkpointing can be found in the man page sge_ckpt.

The processors field can be used to use a pre-defined processor set on the Solaris
operating system. It is deprecated since the advent of the core binding feature.

 Warning
Do not use the processors field when using the core binding feature on Solaris!

The qtype field specifies what type the queue has. Allowed values are BATCH,
INTERACTIVE, a combination of both and NONE. Interactive queues can run jobs from
interactive commands, like qrsh, qsh, qlogin, and qsub -now y. The remaining batch

66

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

jobs can only run in BATCH queues.

The list of checkpointing environments associated with this queue can be set at ckpt_list.
Further information about checkpointing can be found in the man page sge_ckpt.

The pe_list contains a list of parallel environments which are associated with this queue.

If rerun is set to FALSE (the default value), the behavior of the jobs running in the queue is
that they are not restarted in case of an execution host failure (see man queue_conf for
more details). If set to TRUE, the jobs are restarted (run again) in such a case. The specified
default behavior for the jobs can be overruled on job level, when the -r option is used during
job submission.

The slots field defines the number of job slots that can be used within each queue instance
(a queue element on a host). In case only normal (sequential) jobs are running within the
queue, it denotes the number of jobs each queue instance is capable to run. When the queue
spans over n hosts, the whole queue is limited to n*slots-value slots.

2.5.2.2.4 Queue Scripting

The tmpdir field specifies the path to the host's temporary file directory. The default value is
/tmp. When the execution daemon starts up a new job, a temporary job directory is created
in tmpdir for this particular job, and the job environment variables TMP and TMPDIR are set
to this path.

The shell field points to the command interpreter, which is used for executing the job script.
This shell is only taken into account when the shell_start_mode in the cluster
configuration is set to either posix_compliant or script_from_stdin. This parameter
can also be overruled by the -S parameter on job submission time.

The prolog field can be set to a path to a shell script that is executed before a job running in
this queue starts. The shell script is running with the same environment as the job. The
output (stdout and stderr) is redirected to the same output file as the job. Optionally the user
under which the prolog script is executed can be set with a <username>@ prefix.

The epilog field sets the path to a shell script that is executed after a job running in this
queue ends. Also see the prolog field and the queue_conf man page.

The shell_start_mode determines which shell executes the job script. Possible values
are posix_compliant (take the shell specified in shell or on job submission time),
unix_behavior (take the shell specified within the shell script (#!) or on job submission
time), or script_from_stdin. More detailed information can be found in the queue_conf
man page.

The starter_method allows one to change the job starting facility. Instead of using the
specified shell, the configured executable is taken for starting the job. By default, this
functionality is disabled (value NONE).

67

2.5.2.2.5 Queue Signals and Notifications

Univa Grid Engine suspends, resumes, and terminates the job process usually by default with
the signals SIGSTOP, SIGCONT, and SIGKILL. These signals can be overridden with the
queue configuration parameters suspend_method,resume_method, and
terminate_method. Possible values are signal names (like SIGUSR1) or a path to an
executable. The executable can have additional parameters. Special parameters are $host,
$job_owner, $job_id, $job_name, $queue, and $job_pid. These variables are
substituted with the corresponding job specific values.

When a job is submitted with a -notify option, the notify field in the queue configuration
defines the time interval between the delivery of the notify signal (SIGUSR1, SIGUSR2) and
the suspend/kill signal.

2.5.2.2.6 Queue Access Controls and Subordination

If user names are listed in the owner_list queue configuration attribute, these users have
the additional right to disable or suspend the queue.

Access control to the queue is configured by the user_lists, xuser_lists, projects,
and xprojects lists. More detailed information about configuration of these fields can be
found in the man page access_lists and in the section Configuring Hosts.

Queue-wise and slot-wise subordination can be defined in the subordinate_list. More
information about the subordination mechanism can be found in the Special Activities Guide
in section Implementing Pre-emption Logic.

2.5.2.2.7 Queue Complexes

If a previously declared complex (see man complex) should be used as a queue complex or
queue consumable (i.e. available on queue instance level), it must be initialized in the
complex_values field.

Queue consumables and queue complexes must be initialized on the queue level. The
complexes_values field allows to configure the specific values of the complexes (e.g.
complex_values test=2 sets the complex test to the value 2 on each queue instance
defined by the queue).

2.5.2.2.8 Queue Calendar and State

The calendar attribute associates a queue with a specific calendar that controls the queue.
More information about calendars can be found in the man page calendar_conf.

The initial_state field specifies the state of the queue instances have after an execution
daemon (having this queue configured) is starting or when the queue is added the first time.
Possible values are default, enabled, and disabled.

68

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

2.5.3 Utilizing Complexes and Load Sensors

The complexes concept in Univa Grid Engine is mainly used for managing resources. The
load sensors are used on execution hosts to provide a functionality for reporting the state of
resources in a flexible way. The following sections describe both concepts and show
examples of how they can be used for adapting Univa Grid Engine to the needs of users.

2.5.3.1 Configuring Complexes

Complexes are an abstract concept for configuring and denoting resources. They are
declared in the complex configuration (qconf -mc). Depending on if these complexes are
initialized with a value, they can reflect either host resources or queue resources. Host
based complexes are initialized in the complex_values field of this execution host
configuration (qconf -me <hostname>). If they are initialized in the global host
configuration (qconf -me global), they are available in the complete cluster. The
configuration value is a list of name/value pairs that are separated by an equals sign (=).

2.5.3.1.1 Adding, Modifying and Deleting Complexes

All complexes are administered in a single table. The following commands are used in order
to show and modify this table:

TABLE: Complex Configuration Commands

Attribute Value Specification

qconf -sc Shows a list of all configured complex entries (the complex table).

qconf -mc

Opens the editor configured in the $EDITOR environment variable with
all configured complex entries. This complex table can be modified then
with the editor. When the editor is closed the complex configuration is
read in.

qconf -Mc
<filename>

Reads the given file in as new complex configuration.

Each row of the complex table consists of the following elements:

TABLE: Complex Configuration Attributes

Attribute Value Specification

name The unique name of the complex.

shortcut
This shortcut can be used instead of the name of complex (e.g. when
requesting the complex). It must be unique in the complex configuration.

type

The type of the complex variable (used for internal compare functions and
load scaling). Possible values are INT, DOUBLE, TIME, MEMORY,
BOOL, STRING, CSTRING, RESTRING and HOST. See man complex
for more detailed format descriptions. A CSTRING is a case insensitive
string type.

69

relop

Specifies the relation operator used for comparison of the user requested
value and the current value of the complex. The following operators are
allowed: ==, <, >, <=, >=, and EXCL. The EXCL operator allows to
define host exclusive of queue exclusive access control.

requestable
Possible values are y, yes, n, no, and f, forced. Yes means that a
user can request this resource, no denotes the resource non-requestable,
and forced rejects all jobs, which do not request this resource.

consumable
Possible values are y, yes, n, no, and j, job. Declares a complex
as a consumable in case of yes. When job is set, the complex is a per job
consumable.

default
When the complex is a consumable, a default request can be set here. It is
overridden when a job requests this complex on command line.

urgency
Defines the resource urgency. When a user requests this resource, this
resource urgency is taken into account when the scheduler calculates the
priority of the job (see urgency policy at ...).

After a default installation, the following complexes are available:

> qconf -sc
#name shortcut type relop requestable consumable default urgency
#---
arch a RESTRING == YES NO NONE 0
calendar c RESTRING == YES NO NONE 0
cpu cpu DOUBLE >= YES NO 0 0
display_win_gui dwg BOOL == YES NO 0 0
h_core h_core MEMORY <= YES NO 0 0
h_cpu h_cpu TIME <= YES NO 0:0:0 0
h_data h_data MEMORY <= YES NO 0 0
h_fsize h_fsize MEMORY <= YES NO 0 0
h_rss h_rss MEMORY <= YES NO 0 0
h_rt h_rt TIME <= YES NO 0:0:0 0
h_stack h_stack MEMORY <= YES NO 0 0
h_vmem h_vmem MEMORY <= YES NO 0 0
hostname h HOST == YES NO NONE 0
load_avg la DOUBLE >= NO NO 0 0
load_long ll DOUBLE >= NO NO 0 0
load_medium lm DOUBLE >= NO NO 0 0
load_short ls DOUBLE >= NO NO 0 0
m_core core INT <= YES NO 0 0
m_socket socket INT <= YES NO 0 0
m_thread thread INT <= YES NO 0 0
m_topology topo RESTRING == YES NO NONE 0
m_topology_inuse utopo RESTRING == YES NO NONE 0
mem_free mf MEMORY <= YES NO 0 0
mem_total mt MEMORY <= YES NO 0 0
mem_used mu MEMORY >= YES NO 0 0
min_cpu_interval mci TIME <= NO NO 0:0:0 0
np_load_avg nla DOUBLE >= NO NO 0 0
np_load_long nll DOUBLE >= NO NO 0 0
np_load_medium nlm DOUBLE >= NO NO 0 0
np_load_short nls DOUBLE >= NO NO 0 0
num_proc p INT == YES NO 0 0
qname q RESTRING == YES NO NONE 0
rerun re BOOL == NO NO 0 0

70

s_core s_core MEMORY <= YES NO 0 0
s_cpu s_cpu TIME <= YES NO 0:0:0 0
s_data s_data MEMORY <= YES NO 0 0
s_fsize s_fsize MEMORY <= YES NO 0 0
s_rss s_rss MEMORY <= YES NO 0 0
s_rt s_rt TIME <= YES NO 0:0:0 0
s_stack s_stack MEMORY <= YES NO 0 0
s_vmem s_vmem MEMORY <= YES NO 0 0
seq_no seq INT == NO NO 0 0
slots s INT <= YES YES 1 1000
swap_free sf MEMORY <= YES NO 0 0
swap_rate sr MEMORY >= YES NO 0 0
swap_rsvd srsv MEMORY >= YES NO 0 0
swap_total st MEMORY <= YES NO 0 0
swap_used su MEMORY >= YES NO 0 0
tmpdir tmp RESTRING == NO NO NONE 0
virtual_free vf MEMORY <= YES NO 0 0
virtual_total vt MEMORY <= YES NO 0 0
virtual_used vu MEMORY >= YES NO 0 0

2.5.3.1.2 Initializing Complexes

After a complex is configured in the complex configuration, it must be initialized with a
meaningful value. The initialization can be done on global, host, or queue level. When a
complex is initialized on global level, the complex is available on the complete cluster. In case
of a consumable, the accounting for the consumable is done cluster-wide. Host level
complexes are available after altering the local cluster configuration on the specific host.
They are available and accounted for in all queue instances on the host. Queue level
complexes are configured for the complete queue but accounted on the host level.

In order to initialize a pre-configured complex as a global complex, the complex_values
attribute in the global host configuration has to be edited. In the following example, a complex
with the name complexname is initialized with the value 10.

> qconf -me global
...
complex_values complexname=10

Host complexes are configured similarly, but instead of editing the global host configuration,
the local host configuration must be changed.

> qconf -me hostname
...
complex_values complexname=10

Queue complexes are configured in the queue configuration:

> qconf -mq queuename
...
complex_values complexname=10

After setting this, each queue instance (each host on which the queue is configured) has a
complex complexname with the value 10 defined. If this complex is a consumable, and the
queue spans over 5 hosts, then overall 50 units can be consumed (10 per queue instance).

71

Sometimes the complex must be initialized with different values on each queue instance (i.e.
here on different hosts). This can be done with the "[" "]" syntax. The following example
assigns the complex complexname on queue instance queue1@host1 10 units, on
queue1@host2 5 units, and on all other queue instances 20.

> qconf -mq queuename
...
complex_values complexname=20,[host1=complexname=10],[host2=complexname=5]

2.5.3.1.3 Using Complexes

After adding and initializing a new complex, the value of the complex can be shown either
with qhost (host level complexes) or with qstat (host, queue, and global complexes).

The qstat -F <complexname> shows the state of the complex complexname on each
queue instance. The output of all available complexes can be seen with qstat -F.

> qstat -F complexname
queuename qtype resv/used/tot. load_avg arch states

all.q@tanqueray BIPC 0/0/20 0.10 lx-amd64
 qc:complexname=20

all.q@unertl BIPC 0/1/10 0.00 lx-amd64
 qc:complexname=50

The prefix qc implies that the type of the complex is a queue based consumable. Other
common prefixes are qf (global complex with a fixed value), and hl (host complex based on
load value). Host specific values can also be seen by qhost -F.

The following table lists the semantic of the both prefix letters.

TABLE: Meaning of Different Prefixes from Complexes Shown by qstat and qhost

Attribute Value Specification

g Cluster global based complex

h Host based complex

q Queue (queue-instance) based complex

l Value is based on load report

L
Value is based on a load report, which is modified through through the load
scaling facility

c Value is a based on consumable resource facility

f The value is fixed (non-consumable complex attribute or a fixed resource limit)
If a complex is requestable (REQUESTABLE equals YES), then a user can request this
resource on job submission time as either a hard or a soft request. A default request is a hard
request, which means that the job only runs on execution hosts/queue instances where the
resource request can be fulfilled. If requesting a resource as a soft request (see qsub man
page -soft parameter), then the Univa Grid Engine scheduler tries to dispatch the job with

72

as few soft request violations as possible.

The following example shows how 2 units of the consumable complex complexname are
requested:

> qsub -l complexname=2 -b y /bin/sleep 120

2.5.3.2 Configuring Load Sensors

By default, the Univa Grid Engine execution daemons report the most common host load
values, such as average CPU load, amount of memory, and hardware topology values such
as the number of CPU cores. If more site specific resource state values are needed, Univa
Grid Engine supports this with the load sensor facility. A load sensor can be a self-created
executable binary or a load sensor script that must just follow a few simple pre-defined rules.
The communication between the execution daemon and the load sensor is done via standard
input and standard output of the load sensor.

Load sensors are registered in the global or local cluster configuration (qconf -mconf,
load_sensors), in which the execution host specific local cluster configuration overrides the
global configuration.

A correct load sensor must respect the following rules:

The load sensor must be implemented as an endless loop.•
When "quit" is read from STDIN, the load sensor should terminate.•
When end-of-line is read from STDIN, the load sensor has to compute the load values
and write the load sensor report to STDOUT.

•

The load sensor report must have the following format:

A report starts with a line containing either the keyword "start" or the keyword "begin".•
A report ends with a line containing the keyword "end".•
In between, the load values are sent. Each load value is a separate line with the
following format: host:name:value. The host denotes the host on which the load
is measured or "global" in the case of a global complex. The name denotes the name
of the resource (complex) as specified in the complex configuration. The value is the
load value to be reported.

•

Sample load sensor scripts can be found here:
$SGE_ROOT/util/resources/loadsensors/. Also consider the man page
sge_execd(8) for additional information.

2.5.4 Advanced Attribute Configuration

With Univa Grid Engine, it is also possible to modify internal objects directly. The following
table shows the commands supporting direct object configurations:

TABLE: Commands for Direct Object Modification

73

Attribute Value Specification

qconf -aattr
obj_nm attr_nm val
obj_id_list

Adds a new specification of an attribute/value pair into an object
(queue, exechost, hostgroup, pe, rqs, ckpt) with a specific
characteristic (e.g. in case of an queue, it is added only to the
queue with the name defined in obj_id_list).

qconf -Aattr
obj_nm fname
obj_id_list

Same as above but the attribute name and attribute value is taken
from a file given by the file name fname.

qconf -dattr
obj_nm attr_nm val
obj_id_list

Deletes an object attribute.

qconf -Dattr
obj_nm fname
obj_id_list

Deletes an object attribute by a given file.

qconf -mattr
obj_nm attr_nm val
obj_id_list

Modifies an object attribute.

qconf -Mattr
obj_nm fname
obj_id_list

Modifies an object attribute based on a given file.

qconf -purge
obj_nm3 attr_nm
objectname

Removes overriding settings for a queue domain
(queue@@hostgroup) or a queue instance. If a hostgroup is
specified, it just deletes the settings for the hostgroup and not for
each single queue instance.

qconf -rattr
obj_nm attr_nm val
obj_id_list

Replaces an object attribute.

qconf -Rattr
obj_nm fname
obj_id_list

Replaces an object attribute based on a given file.

2.5.4.1 Example: Modification of a Queue Configuration

The following example shows how this direct object attribute modification can be used to
initialize a queue consumable.

First add a new consumable test to the complex configuration.

> qconf -sc > complexes; echo "test t INT <= YES NO 0 0" >> complexes; qconf -Mc complexes
daniel@macsuse added "test" to complex entry list

Show the default complex initialization of queue all.q.

> qconf -sq all.q | grep complex_values
complex_values NONE

74

Now initialized the consumable test with the value 2 on all queue instances defined by the
queue all.q.

> qconf -aattr queue complex_values test=2 all.q
daniel@macsuse modified "all.q" in cluster queue list

Show the initialization:

> qconf -sq all.q | grep complex_values
complex_values test=2

Now add a different initialization value for the queue instance all.q@macsuse.

> qconf -aattr queue complex_values test=4 all.q@macsuse
daniel@macsuse modified "all.q" in cluster queue list

Show the updated queue attribute.

> qconf -sq all.q | grep complex_values
complex_values test=2,[macsuse=test=4]

Remove the configuration for all.q@macsuse.

> qconf -purge queue complex_values all.q@macsuse
daniel@macsuse modified "all.q" in cluster queue list

Now show the queue configuration again:

> qconf -sq all.q | grep complex_values
complex_values test=2

2.6 Monitoring and Modifying User Jobs

Refer to section Monitoring and Controlling Jobs in the User's Guide for information on how
to monitor jobs and how to use Univa Grid Engine commands to make modifications to
waiting or already executing jobs.

In addition to the modifications a user can do, an administrator can also do the following:

Monitor and modify jobs of all users•
Set the scheduling priority of a job to a value above the default of 0. The administrator
may set this priority to values between -1023 and 1024. This is done with the "-p
priority" option of qalter.

•

Force the immediate deletion of a job in any case. As a normal user, the "-f" option of
qdel can be used only if ENABLE_FORCE_QDEL is specified in the
qmaster_params setting of the cluster global configuration. Even if this is specified,
the normal user still can't force the immediate deletion of a job; the job will first be
deleted in the normal way, and only if this fails will the deletion be forced. As an
administrator, the job deletion will immediately be forced.

•

75

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

2.7 Diagnostics and Debugging

The sections below describe aspects of diagnosing scheduling behavior and obtaining
debugging information.

2.7.1 Diagnosing Scheduling Behavior

Univa Grid Engine provides several means that help clarify why the scheduler makes specific
decisions or what decisions it would make based on the current cluster state for a job with
specific requirements.

The qselect command prints the list of possible queues to which a job with the given
requirements could be scheduled. qselect options are listed below:

specify all requirements the job has using the "-l" option•
limit the possible queues using the "-q" and "-qs" option•
specify the job user with the "-U" option•
specify the available parallel environments using the "-pe" option•

The -w p option specified in the qsub, qsh, qrsh or qlogin command line prints the
scheduler decisions that would be made for this job with the current cluster state, but does
not submit the job. When specified in the qalter command line, the -w p option prints this
list for a job that is queued and waiting. This is a rather efficient way to get the scheduling
info, but it provides the data only for this very moment.

qstat -j <job_id> prints the "scheduling_info:" for the given job. This is the same data
that qalter -w p <job_id> prints, except that it is collected for the whole lifetime of the
job. This information is available only if the "schedd_job_info" configuration value is set to
true in the scheduler configuration. Note that having "schedd_job_info" set to true may have
severe impacts on the scheduler performance.

qconf -tsm triggers a scheduler run and writes data for all currently queued jobs to the file
$SGE_ROOT/$SGE_CELL/common/schedd_runlog. This slows down the scheduler run
significantly, but is done only for this one scheduler run.

By setting the "params" configuration value to "MONITOR=1" in the scheduler configuration,
the scheduler writes one or more lines for every decision it makes about a job or a task to the
file $SGE_ROOT/$SGE_CELL/comon/schedule. This is described in detail below in the
section "Turning on Debugging Information"/"Activating Scheduler Monitoring". This option
also slows down the scheduling process.

Scheduler profiling helps answer the question of why a scheduler run might be taking so long.
Enable scheduler profiling by setting the "params" configuration value to "PROFILE=1" in the
scheduler configuration. The scheduler then writes statistics about the scheduler run times to
the QMaster messages file. This is described in detail below in the section "Turning on
Debugging Information"/"Activating Scheduler Profiling".

76

2.7.2 Location of Logfiles and Interpreting Them

The daemons of Univa Grid Engine write their status information, warnings and errors to log
files, as follows.

TABLE: Daemon Log File Locations

Daemon Log file

sge_qmasters <sge_qmaster_spool_dir>/messages

sge_shadowd <sge_qmaster_spool_dir>/messages_shadowd.<host>

sge_sgeexecd <sge_execd_spool_dir>/messages

sge_shepherd <sge_execd_spool_dir>/active_jobs/<job_dir>/trace

dbwriter $SGE_ROOT/$SGE_CELL/common/spool/dbwriter/dbwriter.log

<sge_qmaster_spool_dir> is the "qmaster_spool_dir" that is defined in the
$SGE_ROOT/$SGE_CELL/common/bootstrap file.

•

<host> is the name of the host on which the {{GEprefixLC}shadowd is running.•
<sge_execd_spool_dir> is the "execd_spool_dir" from the global or the host local
configuration ("qconf -sconf" resp. "qconf -sconf <host>").

•

<job_dir> is composed from the job ID and the task ID, e.g. "42.1".•

All "messages" and "messages_shadowd.<host>" files have the same structure:

05/20/2011 14:27:49| main|kailua|I|starting up UGE 8.0.0 (lx-x86)
05/20/2011 14:30:07|worker|kailua|W|Change of "execd_spool_dir" will not be effective before sge_execd restart as described in sge_conf(5)
05/20/2011 14:30:23|worker|kailua|E|There are no jobs registered
05/20/2011 14:30:24|worker|kailua|E|sharetree does not exist
05/20/2011 14:30:47|worker|kailua|I|using "/var/spool/gridengine/4080/execd" for execd_spool_dir
05/20/2011 14:30:47|worker|kailua|I|using "/bin/mail" for mailer

The columns contain the date, time, thread name, host name, message type and the
message itself.

Date, time and the host name describe when and where the line was written to the log
file.

•

The thread name is always "main", except for the•

sge_qmaster which has several threads.

The message type is one of C(ritical), E(rror), W(arning), I(nfo) or D(ebug). Which
messages are logged is controlled by the "loglevel" setting in the global configuration.
If this is set to "log_error", only messages of type "C" and "E" are logged; if it is
"log_warning", additionally the messages of type "W" are logged; for "log_info"
messages of type "I" are also logged; and for "log_debug"

•

messages of all types are logged.

77

The "trace" file of the shepherd is available only while the job is running, except when the
"execd_params" "KEEP_ACTIVE=TRUE" is set; then it is also available after the job ends.
Such a trace file looks like this:

05/23/2011 15:09:00 [1000:26811]: shepherd called with uid = 0, euid = 1000
05/23/2011 15:09:00 [1000:26811]: starting up 8.0.0
05/23/2011 15:09:00 [1000:26811]: setpgid(26811, 26811) returned 0
05/23/2011 15:09:00 [1000:26811]: do_core_binding: "binding" parameter not found in config file

The columns contain the date and time, the effective user ID and the process ID of the
sge_shepherd process and the message itself.

The log file of the dbwriter looks like this:

23/05/2011 14:14:18|kailua|.ReportingDBWriter.initLogging|I|Starting up dbwriter (Version 8.0.0) ---------------------------
23/05/2011 14:14:18|kailua|r.ReportingDBWriter.initialize|I|Connection to db jdbc:postgresql://kailua:5432/arco
23/05/2011 14:14:19|kailua|r.ReportingDBWriter.initialize|I|Found database model version 10
23/05/2011 14:14:19|kailua|tingDBWriter.getDbWriterConfig|I|calculation file /gridengine/dbwriter/database/postgres/dbwriter.xml has changed, reread it
23/05/2011 14:14:19|kailua|Writer$VacuumAnalyzeThread.run|I|Next vacuum analyze will be executed at 24.05.11 12:11
23/05/2011 14:14:19|kailua|ngDBWriter$StatisticThread.run|I|Next statistic calculation will be done at 23.05.11 15:14
23/05/2011 14:15:19|kailua|er.file.FileParser.processFile|I|Renaming reporting to reporting.processing
23/05/2011 14:15:19|kailua|iter.file.FileParser.parseFile|W|0 lines marked as erroneous, these will be skipped
23/05/2011 14:15:19|kailua|iter.file.FileParser.parseFile|I|Deleting file reporting.processing

Here again, the first two columns are date and time, then the name of the host on which the
dbwriter is running, the right-most part of the function that did the logging, the type of the
message and the message itself.

If the particular module of Univa Grid Engine can't write to its messages file - e.g. because of
insufficient permissions, because the directory doesn't exist or isn't accessible, and so on -
then it writes a panic file to the /tmp directory. The names of these panic files are related to
the name of the module that wrote them, and the pid of the module is always appended to the
file name. E.g. execd_messages.<pid> or shepherd.<pid>

2.7.3 Turning on Debugging Information

The debugging sections describe recommended debugging tools available in Univa Grid
Engine, including scheduler profiling, logfiles and DTrace.

2.7.3.1 Activating Scheduler Profiling

The Univa Grid Engine profiling functionality is used during the development of the software
to analyze the performance of the scheduler component. Also in customer environments the
profiling can be used to detect issues in the setup of the cluster.

With the profiling module enabled in the scheduler component, profiling is running as a thread
within the sge_qmaster process and will print additional log messages to the message file
of the master component. The message file can be found in the directory
$SGE_ROOT/$SGE_CELL/spool/qmaster/

Each line in the output is introduced by the following:

78

time when the output was made,•
the name of the thread that caused the logging,•
the hostname on which the component is running,•
a letter that shows what kind of logging message was printed (P for profiling)•
and the logging message itself:•

 05/13/2011 08:42:07|schedu|host1|P|PROF: ...

The line above shows profiling output (P) of the scheduler thread that was running on host
host1. Profiling messages themselves will either start with PROF: or PROF(<timestamp>):.

For simplicity, the prefixed text of each line has been skipped in the following sample output:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

PROF: sge_mirror processed 5 events in 0.000 s
PROF: static urgency took 0.000 s
PROF: job ticket calculation: init: 0.030 s, pass 0: 0.030 s, pass 1: 0.000, pass2: 0.000, calc: 0.010 s
PROF: job ticket calculation: init: 0.000 s, pass 0: 0.000 s, pass 1: 0.000, pass2: 0.000, calc: 0.000 s
PROF: normalizing job tickets took 0.010 s
PROF: create active job orders: 0.010 s
PROF: job-order calculation took 0.090 s
PROF: job sorting took 0.090 s
PROF: job dispatching took 0.000 s (20 fast, 0 fast_soft, 0 pe, 0 pe_soft, 0 res)
PROF: parallel matching global rqs cqstatic hstatic qstatic hdynamic qdyn
PROF: sequential matching global rqs cqstatic hstatic qstatic hdynamic qdyn
PROF: parallel matching 0 0 0 0 0 0 0
PROF: sequential matching 20 0 20 20 20 20 20
PROF: create pending job orders: 0.050 s
PROF: scheduled in 0.310 (u 0.220 + s 0.000 = 0.220): 20 sequential, 0 parallel, 11799 orders, 3 H, 0 Q, 2 QA,
 11775 J(qw), 20 J(r), 0 J(s), 0 J(h), 0 J(e), 0 J(x), 11795 J(all), 52 C, 1 ACL, 1 PE, 1 U, 1 D, 1 PRJ,
 0 ST, 1 CKPT, 0 RU, 1 gMes, 0 jMes, 11799/4 pre-send, 0/0/0 pe-alg
PROF: send orders and cleanup took: 0.090 (u 0.080,s 0.000) s
PROF: schedd run took: 0.720 s (init: 0.000 s, copy: 0.200 s, run:0.490, free: 0.000 s, jobs: 10929, categories: 1/0)

The text box above shows the profiling output of one scheduler run.

Line 1: At the beginning, the scheduler thread receives events containing all
information about configuration and state changes since the last event package was
received. This line shows how many events the scheduler received and how long it
took to update scheduler internal data structures according the instructions in the
events.

•

Line 2: Shows the time needed to calculate the numbers for the urgency policy.•
Line 3: The output contains different calculation times for the ticket policy. init shows
how long it took to setup all internal data structures. Pass 1 to pass 2 show time for
data preparation steps, and calc shows the time for the final ticket calculation of all
pending jobs.

•

Line 4: Same as in line 3 but for running jobs.•
Line 5: Shows the time needed to normalize the tickets so that they are in a range
between 0 and 1.

•

Line 6: Here, orders for running jobs are generated and sent to other threads
executing those orders. The time does not include processing of those orders.

•

Line 7: Overall time needed (including all times from 2 to 6) to compute the priority of
of all jobs.

•

79

Line 8: Jobs need to be sorted to reflect the job priority. This shows the length of time
that this sorting took.

•

Line 9: Now the scheduler can start to dispatch jobs to needed compute resources.
The time for this step is shown along with how many jobs of each category could be
scheduled. The scheduler distinguishes between:

fast jobs (sequential jobs without soft resource request)®
fast_soft jobs (sequential jobs with soft resource requests)®
pe jobs®
pe_soft jobs (parallel jobs with soft resource requests)®
res jobs (jobs with reservation)®

•

Line 10-13: Show for how many jobs the different parts of the scheduler algorithm
where passed.

•

Line 14: Time needed to create priority update orders for all pending jobs.•
Line 15-17: Time (wallclock, system and user time) needed to schedule all jobs
including all previous steps except for step 1.

•

Line 18: The scheduler already sent orders during the scheduling run. This line shows
how long it took to send orders that could not be sent during the scheduler
processing, and the time also includes cleanup time to remove data structures that
are no longer needed.

•

Line 19: The time needed for the whole scheduling run including all previous steps.
init - initialization time®
copy - time to replicate and filter data for the scheduler processing®
run - scheduler algorithm®
free - time to free previously allocated data®
jobs - number of jobs in the system (before copy operation)®
categories 1 - number of categories®
categories 2 - number of priority classes®

•

The scheduler also dumps system user and wall-clock times of each processing layer.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

PROF(1664087824): scheduler thread profiling summary:
PROF(1664087824): other : wc = 55.870s, utime = 0.000s, stime = 6.050s, utilization = 11%
PROF(1664087824): packing : wc = 0.000s, utime = 0.000s, stime = 0.000s, utilization = 0%
PROF(1664087824): eventclient : wc = 0.000s, utime = 0.000s, stime = 0.000s, utilization = 0%
PROF(1664087824): mirror : wc = 0.020s, utime = 0.000s, stime = 0.040s, utilization = 200%
PROF(1664087824): gdi : wc = 0.000s, utime = 0.000s, stime = 0.000s, utilization = 0%
PROF(1664087824): ht-resize : wc = 0.000s, utime = 0.000s, stime = 0.000s, utilization = 0%
PROF(1664087824): scheduler : wc = 0.910s, utime = 0.340s, stime = 0.040s, utilization = 42%
PROF(1664087824): pending ticket : wc = 0.130s, utime = 0.000s, stime = 0.000s, utilization = 0%
PROF(1664087824): job sorting : wc = 0.110s, utime = 0.120s, stime = 0.020s, utilization = 127%
PROF(1664087824): job dispatching: wc = 0.000s, utime = 0.000s, stime = 0.000s, utilization = 0%
PROF(1664087824): send orders : wc = 0.380s, utime = 0.360s, stime = 0.050s, utilization = 108%
PROF(1664087824): scheduler event: wc = 0.180s, utime = 0.110s, stime = 0.010s, utilization = 67%
PROF(1664087824): copy lists : wc = 1.270s, utime = 0.260s, stime = 0.440s, utilization = 55%
PROF(1664087824): total : wc = 60.340s, utime = 2.070s, stime = 6.790s, utilization = 15%

2.7.3.2 Activating Scheduler Monitoring

There are different ways to monitor the scheduler and the decisions it makes. Profiling that
shows the main activity steps and corresponding run times can be enabled as outlined in the
previous chapter. Besides that, administrators can also enable additional monitoring. The
monitoring output can be used to find out why certain scheduler decisions where made and

80

also why specific jobs were not started. Note that enabling additional monitoring might throttle
down the scheduler and therefore the cluster throughput.

2.7.3.2.1 Find Reasons Why Jobs are Not Started

The scheduler can collect the reasons why jobs could not be scheduled during a scheduler
run. The parameter schedd_job_info of the scheduler configuration enables or disables
this functionality. If it is enabled, then messages containing the reasons why it was not
possible to schedule a job will be collected for the not-scheduled jobs. The amount of
memory that might be needed to store that information within the sge_qmaster process
could be immense. Due to this reason, this scheduler job information is disabled by default.

If it is enabled, then qstat might be used to retrieve that information for a specific jobs:

 # qstat -j <jid>
 scheduling info: queue instance "all.q@host1" dropped because it is overloaded:
 queue instance "all.q@host1" dropped because it is disabled
 All queues dropped because of overload or full
 Job is in hold state

2.7.3.2.2 Enable Monitoring to Observe Scheduler Decisions

Especially when resource or advance reservation is used in a cluster it might be helpful to
understand how the scheduler is influenced by the existing reservations. For this purpose, the
scheduler configuration parameter setting MONITOR can be enabled. This causes the
scheduler to add information to the schedule file that is located in the directory
$SGE_ROOT/$SGE_CELL/common/. The following example briefly introduces scheduler
monitoring.

Assume the following sequence of jobs:

 qsub -N L4_RR -R y -l h_rt=30,license=4 -p 100 $SGE_ROOT/examples/jobs/sleeper.sh 20
 qsub -N L5_RR -R y -l h_rt=30,license=5 $SGE_ROOT/examples/jobs/sleeper.sh 20
 qsub -N L1_RR -R y -l h_rt=31,license=1 $SGE_ROOT/examples/jobs/sleeper.sh 20

These jobs are being submitted into a cluster with the global license consumable resource
that has been limited to a number of 5 licenses. Due to the use of these default priority
settings in the scheduler configuration:

 weight_priority 1.000000
 weight_urgency 0.100000
 weight_ticket 0.010000

the -p priority of the L4_RR job will be sure to overwhelm the license based urgency, finally
resulting in a prioritization such as the following:

 job-ID prior name

 3127 1.08000 L4_RR
 3128 0.10500 L5_RR
 3129 0.00500 L1_RR

81

In this case, traces of those jobs can be found in the schedule file for 6 schedule intervals:

 ::::::::
 3127:1:STARTING:1077903416:30:G:global:license:4.000000
 3127:1:STARTING:1077903416:30:Q:all.q@host3:slots:1.000000
 3128:1:RESERVING:1077903446:30:G:global:license:5.000000
 3128:1:RESERVING:1077903446:30:Q:all.q@host2:slots:1.000000
 3129:1:RESERVING:1077903476:31:G:global:license:1.000000
 3129:1:RESERVING:1077903476:31:Q:all.q@host1:slots:1.000000
 ::::::::
 3127:1:RUNNING:1077903416:30:G:global:license:4.000000
 3127:1:RUNNING:1077903416:30:Q:all.q@host3:slots:1.000000
 3128:1:RESERVING:1077903446:30:G:global:license:5.000000
 3128:1:RESERVING:1077903446:30:Q:all.q@host1:slots:1.000000
 3129:1:RESERVING:1077903476:31:G:global:license:1.000000
 3129:1:RESERVING:1077903476:31:Q:all.q@host1:slots:1.000000
 ::::::::
 3128:1:STARTING:1077903448:30:G:global:license:5.000000
 3128:1:STARTING:1077903448:30:Q:all.q@host3:slots:1.000000
 3129:1:RESERVING:1077903478:31:G:global:license:1.000000
 3129:1:RESERVING:1077903478:31:Q:all.q@host2:slots:1.000000
 ::::::::
 3128:1:RUNNING:1077903448:30:G:global:license:5.000000
 3128:1:RUNNING:1077903448:30:Q:all.q@host3:slots:1.000000
 3129:1:RESERVING:1077903478:31:G:global:license:1.000000
 3129:1:RESERVING:1077903478:31:Q:all.q@host1:slots:1.000000
 ::::::::
 3129:1:STARTING:1077903480:31:G:global:license:1.000000
 3129:1:STARTING:1077903480:31:Q:all.q@host3:slots:1.000000
 ::::::::
 3129:1:RUNNING:1077903480:31:G:global:license:1.000000
 3129:1:RUNNING:1077903480:31:Q:all.q@host3:slots:1.000000
 ::::::::

For a schedule interval, each section shows all resource utilizations that were taken into
account. The RUNNING entries show utilizations of jobs that already were running at the
beginning of the interval, STARTING entries denote immediate utilizations that were decided
within the interval, and RESERVING entries show utilizations that are planned for the future
i.e. reservations.

The format of the schedule file is

jobid: The jobs id.•
taskid: The array task id or 1 in case of non-array jobs.•
state: One of RUNNING/SUSPENDED/MIGRATING/STARTING/RESERVING.•
start_time: Start time in seconds after 1.1.1970.•
duration: Assumed job duration in seconds.•
level_char: One of P,G,H and Q standing for PE, Global ,Host and Queue.•
object_name: The name of the PE/global/host/queue.•
resource_name: The name of the consumable resource.•
utilization: The resource utilization debited for the job.•

A line "::::::::" marks the begin of a new schedule interval.

82

2.7.3.3 Activate Debugging Output from the Command-Line and How to Interpret It

To activate debugging output of Univa Grid Engine applications, do the following before
starting the application to be tested:

 # . $SGE_ROOT/default/common/settings.sh
 # . $SGE_ROOT/util/dl.sh
 # dl <debug_level>
 # <uge_command>

The dl.sh script makes the dl command available. The dl command will set necessary
environment variables for a specific debug level. If the Univa Grid Engine command is
started, then it will print debug messages to stderr. In debug_level 1, the applications print
general information messages about what steps are executed. debug_level 2 will show
function calls of the upper processing layers and corresponding locations in the source code
that are passed. Other debug_levels are available, but are not recommended for users or
administrators.

Here is an example for the output of the qstat command in debug_level 1:

01
02
03
04
05
06
07
08
09

 0 17230 140106943756032 returning port value: 5001
 1 17230 main creating qstat GDI handle
 2 17230 main file "/Users/ernst/Test/5000/default/common/sge_qstat" does not exist
 3 17230 main file "/Users/ernst/.sge_qstat" does not exist
 4 17230 main queues not needed
 5 17230 main sge_set_auth_info: username(uid) = user1(500), groupname = univa(1025)
 6 17230 main ------- selecting queues -----------
 7 17230 main ------- selecting jobs -----------
 8 17230 main Destroy handler

The first column in the output shows a line number followed by the PID of the process that is
being debugged. The third column will either show an internal thread id or the thread name of
the thread that logs the message. After that, the debug message is printed.

2.7.3.4 Using DTrace for Bottleneck Analysis

DTrace is a dynamic tracing framework available for different operating systems like
FreeBSD, NetBSD, Mac OS X or Solaris. This application can be used by developers and
administrators to retrieve helpful information about running processes. In combination with
Univa Grid Engine, this Software can be used on the master machine to receive dynamic
events with data about qmasters:

spooling framework•
message processing•
scheduling•
synchronization between scheduler and other master threads•
communication framework•
locking infrastructure•

The DTrace tool can be started with the monitor.sh script that is located in
$SGE_ROOT/dtrace directory after the installation of the Univa Grid Engine system. The
monitor.sh script needs to be executed as user root on the machine on which the

83

sge_qmaster process is running in order to receive dynamic events.

By default, the monitor.sh script prints one line of output for each statistics interval. The
default interval is 15 seconds, but this can be changed with the -interval command line
parameters. To see which function calls of spooling or request framework are called,
including all parameters that are passed to those functions, it might be possible add the
command line parameters -spooling and/or -requests when the monitoring script is
started. If the cell name is different from default, then the cell name can be specified with the
-cell <cell_name> parameter.

The following table describes the counters values of the statistics output.

TABLE: Columns Shown in DTrace Output

Topic Name Description

Spooling
#wrt

Number of qmaster write operations via
spool_write_object() and spool_delete_object(). Almost any
significant write operation goes through this function both in
bdb/classic spooling.

wrt Total time all threads spend in spool_write_object() in micro
seconds.

Synchronization

#snd

Number of event packages sent by qmaster to schedd. If
that number goes down to zero over longer time there is
something wrong and qmaster/schedd has gotten out of
sync.

#rcv

Number of event packages received by schedd from
qmaster. If that number goes down to zero over longer time
there is something wrong and qmaster/schedd has gotten
out of sync.

Message
Processing

#rep
Number of reports qmaster processed through
sge_c_report(). Most data sent by execd's to qmaster
comes as such a report (job/load/config report).

#gdi

Number of GDI requests qmaster processed through
do_gdi_request(). Almost anything sent from client
commands arrives at qmaster as a GDI request, but
execd's and scheduler also use GDI requests.

#ack

Number of ACK messages qmaster processed through
do_c_ack(). High numbers of ACK messages can be an
indication of job signaling, but they are also used for other
purposes.

Scheduling #dsp Number of calls to dispatch_jobs() in schedd. Each call to
dispatch_jobs() can seen as a scheduling run.

dsp Total time scheduler spent in all calls to dispatch_jobs().

#sad Number of calls to select_assign_debit(). Each call to
select_assign_debit() can be seen as a try of the scheduler

84

to find an assignment or a reservation for a job.

Communication

#in++ Number of messages added into qmaster received
messages buffer.

#in--

Number of messages removed from qmaster received
messages buffer. If more messages are added than
removed during an interval, the total of messages not yet
processed is about to grow.

#out++ Number of messages added into qmaster send messages
buffer.

#out--

Number of messages removed from qmaster send
messages buffer. If more messages are added than
removed during an interval, the total of not yet messages
not yet delivered is about to grow.

Locking
#lck0/#ulck0

Number of calls to sge_lock()/sge_unlock() for qmasters
global lock. This lock must always be obtained, when
qmaster-internal lists (job list, queue list, etc.) are accessed.

#lck1/#ulck1 Number of calls to sge_lock()/sge_unlock() for qmasters
master_config lock.

Go back to the Univa Grid Engine Documentation main page.

85

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

3 Special Activities

3.1 Tuning Univa Grid Engine for High Throughput

In clusters with high throughput, there is usually a high volume of short jobs (job run times in
the magnitude of seconds).

Both the submission rate as well as the number of jobs finishing in a certain time frame is
high, there may also be a high number of pending jobs.

Cluster sizes range from small clusters with only a few hosts to large clusters with thousands
of hosts.

A number of setup and tuning parameters can help in achieving high throughput and high
cluster utilization in such high throughput scenarios.

3.1.1 sge_qmaster Tuning

3.1.1.1 Setup Options

In high throughput scenarios, performance of the cluster highly depends on the spooling done
by sge_qmaster. Every job submission, job status transition and finally job end result in
spooling operations.

Therefore the sge_qmaster spooling options should be carefully chosen:

Use Berkeley DB spooling if possible.•
Do spooling on a local file system, unless a high availability is required using
sge_shadowd, see also Ensuring High Availability.

•

If spooling needs to be on a shared file system, Berkeley DB spooling on NFS4 is
preferred over classic spooling.

•

Choosing the spooling method is usually done during Univa Grid Engine installation.

3.1.1.2 Configuration Options

The following options in the global cluster configuration can have a significant impact on
sge_qmaster performance. Changing these parameters takes immediate effect.

The attribute loglevel defines how much information is logged to the sge_qmaster
messages file during sge_qmaster runtime. If loglevel is set to log_info, messages will
get logged at every job submission and job termination. Set loglevel to log_warning to
reduce overhead from writing the sge_qmaster messages file.

•

Do the following configuration for the attribute reporting_params:
Make sure to write operations on the accounting file and optionally if the
reporting files are buffered. The parameter flush_time should be set to at least
one second (00:00:01). If it is set to 0, buffering of write operations to the
accounting and the reporting file is not done. Should the attribute

®
•

86

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

accounting_flush_time be set, it must either be removed (meaning that
flush_time will be in effect for the accounting file) or set to at least one second
(00:00:01).
If reporting is enabled, the log_consumables attribute must be set to false.
log_consumable is an option ensuring compatibility to a (mis)behavior in Sun
Grid Engine < 6.2. Setting it to true results in a high volume of data written to
the reporting file whenever a consumable value changes. It should always be
set to false.

®

See also Understanding and Modifying the Cluster Configuration for more details on the
global cluster configuration.

3.1.2 Tuning Scheduler Performance

An important factor in high throughput scenarios is scheduler performance. Reducing the
time required for a single scheduling run will allow for more precise scheduling runs.

The scheduler configuration allows for the setting of attributes having significant impact on
scheduler performance.

Setting the attribute flush_submit_sec to 1 triggers a scheduling run whenever a job is
submitted. Given that there are free resources in the cluster the newly submitted job
might get started immediately.

•

The attribute flush_finish_sec has a similar meaning. By settings its value to 1 a
scheduling run is triggered whenever a job finishes. The resources having been held
by the just finished job can get reused immediately.

•

The default configuration of Univa Grid Engine makes scheduler dispatch jobs to the
least loaded host and adds some virtual load to a host when a job gets dispatched to
it. Adding virtual load to a host requires sorting the host list after every dispatch
operation, which can be an expensive operation in large clusters. By setting the
attribute load_adjustment to NONE scheduling overhead can be reduced significantly.

•

When the schedd_job_info attribute is set to true scheduler provides information
about why a job cannot get dispatched to sge_qmaster which can then be queried by
calling qstat -j <job_id>. Setting schedd_job_info to false significantly reduces
the amount of information generated by scheduler and being held by sge_qmaster,
lowering the amount of memory required by sge_qmaster and the overhead of
producing the information messages. Querying the reason why a job cannot get
dispatched is then provided by calling qalter -w p <job_id>.

•

Resource reservation results in quite expensive analysis being done in the scheduler.
If resource reservation is not required, consider disabling it completely by setting the
attribute max_reservation to 0.

•

See also
Common_Tasks#Understanding_and_Modifying_the_Univa_Grid_Engine_Scheduler_Configuration
for further information about the scheduler configuration.

In general, the fewer the scheduling policies configured, the higher the scheduler
performance.

87

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

3.1.3 Reducing Overhead on the Execution Side

3.1.3.1 Local sge_execd Spooling

In high throughput scenarios with short running jobs, many jobs are started and completed
per time period. One of the most expensive operations at job start and end is job spooling
and the creation of temporary files and directories for the job start and the cleaning of
temporary data at job end.

By configuring the execution daemons to use a local file system for spooling, performance
can be significantly improved.

For changing the sge_execd spool directory

make sure no jobs are running on the hosts affected,•
modify the global cluster configuration or the local cluster configuration for the exec
host,

•

set the attribute execd_spool_dir to the new spool directory,•
shut down and restart the sge_execd.•

3.1.3.2 Switch off PDC

The PDC (Portable Data Collector) is a module in sge_execd which monitors resource usage
of jobs (online usage) and enforces limits (e.g. wallclock limit) on jobs.

For jobs running only a few seconds, the online usage produced by PDC will probably never
be used, and a short job will usually not run into wallclock or CPU limits.

In this case, consider switching off PDC. PDC can be switched off by modifying the global
cluster configuration and adding PDC_INTERVAL=NEVER to the attribute execd_params.

3.1.4 Choosing Job Submission Options

Choosing the right options at job submission can have significant impact on

submission time,•
scheduling time,•
job execution time.•

The following submission options have negative impacts on scheduler performance. Try to
avoid them if possible:

Soft requests: qsub -soft -l resource_list.•
Wildcard parallel environments, e.g. qsub -pe mpi* 4.•
Resource reservation: qsub -R yes•

For submission of a high number of similar jobs consider using array jobs, see
User_Guide#Array_Jobs.

88

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

For modeling job dependencies consider the use of qmake, see User_Guide#qmake. Instead
of submitting individual jobs with dependencies to Univa Grid Engine, the jobs can either

be started as tasks within a single parallel job•
be submitted as individual jobs by qmake, but qmake limits the number of jobs (tasks)
being submitted concurrently to Univa Grid Engine, thus keeping the total number of
jobs in the cluster low.

•

download this book as a PDF

3.2 Tuning Univa Grid Engine for Large Parallel
Applications

3.2.1 General Settings

3.2.1.1 Interactive Job Support

Large parallel jobs using the tight parallel job integration (see also Parallel Environments)
start the tasks of the parallel job through the Univa Grid Engine command qrsh -inherit.

The session type to use for qrsh -inherit is configured in the cluster configuration,
attributes rsh_daemon and rsh_command.

The choice of the session type can have significant impact on the performance of starting
tasks, it is recommended to use the builtin session type. This is the default for a Univa Grid
Engine installation.

See also Interactive Jobs for further information about the session types.

3.2.1.2 Accounting Summary

When running tightly integrated parallel jobs, the attribute accounting_summary of the parallel
environment configuration defines if

a single accounting record is generated for the whole job, or•
an individual accounting record is generated for the master task and for every slave
task.

•

Generating individual accounting records for every task increases

the communication between the sge_qmaster and the execution nodes,•
the spooling effort for sge_qmaster (it has to spool every individual slave task),•
the number of accounting records and the size of the accounting file.•

In most cases the combined accounting for the whole job is what the user actually wants to
see.

89

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

Setting accounting_summary to TRUE can significantly improve the overall performance of
sge_qmaster and the execution nodes.

See also Parallel Environments for further information about configuration and use of parallel
environments.

3.2.2 Tuning on the Execution Side

There are different options to shorten the time of job execution on the execution (sge_execd)
side:

tune sge_execd performance•
reduce impact of sge_execd on the execution host•

3.2.2.1 Tuning sge_execd

Performance of sge_execd, especially at job / parallel task startup and end depends on the
spooling setup of sge_execd.

When a job is delivered by sge_qmaster to sge_execd for start, or when a task of a
tightly-integrated job is started by the master task, sge_execd spools the job data and
optionally the job script, and it creates temporary files for startup and monitoring of the job
(active_jobs/<job_id>.<task_id>/...).

When a job or task finishes, the job spooling and temporary files need to be deleted.

All spooling data is written in subdirectories of the execd_spool_dir configured in the global or
local cluster configuration, see also Understanding and Modifying the Cluster Configuration

Performance of the spooling operations highly depends on the file system used for spooling.

It is recommended to do sge_execd spooling on a local file system.

For changing the sge_execd spool directory

make sure that no jobs are running on the hosts affected•
modify the global cluster configuration or the local cluster configuration for the exec
host

•

set the attribute execd_spool_dir to the new spool directory•
shut down and restart the sge_execd•

3.2.2.2 Reducing Impact of sge_execd on the Execution Host

When a job is running on an execution host, the sge_execd is monitoring the processes
belonging to the job. Job monitoring is done by the PDC - the Portable Data Collector. The
PDC gathers per job usage information (cpu, memory and - on selected platforms - io) and is
enforcing limits h_cpu, s_cpu, h_vmem and s_vmem.

90

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

The process monitoring can create noticeable load on the execution host, depending on the
number of jobs running on the host and the number of processes (size of the process chain)
initiated per job.

It can be configured in the (local or global) cluster configuration, attribute execd_params.

Setting the execd_param PDC_INTERVAL determines how often online usage of running
jobs are gathered and limits are evaluated.

PDC_INTERVAL can be set to

NEVER: No online usage is gathered. Switches off the PDC in sge_execd. Use this
option only when

no sharetree is configured®
online usage information of jobs isn't needed®
ARCo (dbwriter) isn't used®

•

PER_LOAD_REPORT: sge_execd triggers a PDC run once per load report interval•
a time range specification (e.g. 0:0:2). PDC is triggered in the specified interval.•

The default PDC interval is 1 second.

3.2.3 Job Related Tuning

Job performance can be influenced by submission options.

The following hints may improve the performance of large parallel jobs.

Avoid exporting huge environments with the submit option -V. Instead export only
selected environment variables, using the submit option -v.

•

Make sure the job writes temporary information to the directory pointed to by the
TMPDIR environment variable. Univa Grid Engine creates a temporary directory
(TMPDIR) for every job and checks that it is deleted at job end. The location for the
temporary directory is set in the queue configuration, see Configuring Queues.

•

If multiple jobs can run on a host, consider using job to core binding for running jobs,
see Jobs with Core Binding.

•

3.3 Optimizing Utilization

Cluster utilization describes the proportion of resources currently used by Univa Grid Engine
jobs in comparison to the whole amount of available resources installed at the compute
cluster. Reaching a high cluster utilization is one of the main goals which Univa Grid Engine
has on its agenda. This section describes basic techniques for optimizing the resource
utilization of an Univa Grid Engine managed cluster.

3.3.1 Using Load Reporting to Determine Bottlenecks and Free Capacity

In order to provide a quick overview about the clusters compute resources state, the qhost
command can be used. Interesting values are the current load value (LOAD) and the amount

91

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

of memory currently in use (MEMUSE).

> qhost
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--
global - - - - - - - - - -
host1 lx-amd64 1 1 1 1 0.21 934.9M 147.7M 1004.0M 0.0
host2 lx-x86 1 0 0 0 0.09 1011.3M 103.4M 1.9G 0.0
host3 lx-amd64 2 1 2 2 0.46 3.4G 343.3M 2.0G 0.0
host4 sol-amd64 2 1 2 2 2.07 2.0G 763.0M 511.0M 0.0
host5 lx-amd64 1 1 1 1 0.09 492.7M 75.3M 398.0M

Unused hosts can be identified through a low load value. To sort the output by load, use
standard commands like the following:

> qhost | tail +4 | sort -k 7
host2 lx-x86 1 0 0 0 0.13 1011.3M 103.4M 1.9G 0.0
host5 lx-amd64 1 1 1 1 0.14 492.7M 75.3M 398.0M 0.0
host1 lx-amd64 1 1 1 1 0.29 934.9M 147.7M 1004.0M 0.0
host3 lx-amd64 2 1 2 2 0.64 3.4G 343.3M 2.0G 0.0
host4 sol-amd64 2 1 2 2 1.94 2.0G 763.0M 511.0M 0

More detailed load information can be seen on execution host level. The qconf -se
<hostname> displays the current raw load values.

> qhost -se host3
...
load_values load_avg=0.000000,load_short=0.000000, \
 load_medium=0.000000,load_long=0.000000,arch=lx-amd64, \
 num_proc=1,mem_free=2818.867188M,swap_free=2053.996094M, \
 virtual_free=4872.863281M,mem_total=3144.273438M, \
 swap_total=2053.996094M,virtual_total=5198.269531M, \
 mem_used=325.406250M,swap_used=0.000000M, \
 virtual_used=325.406250M,cpu=0.200000,m_topology=SC, \
 m_topology_inuse=SC,m_socket=1,m_core=1,m_thread=1, \
 np_load_avg=0.000000,np_load_short=0.000000, \
 np_load_medium=0.000000,np_load_long=0.000000
...
report_variables NONE

In order to see the processed (in case of load scaling) values -h hostname -F can be
used:

> qhost -h host6 -F
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--
global - - - - - - - - - -
host7 lx-x86 1 0 0 0 0.00 1011.3M 106.5M 1.9G 0.0
 hl:arch=lx-x86
 hl:num_proc=1.000000
 hl:mem_total=1011.332M
 hl:swap_total=1.937G
 hl:virtual_total=2.925G
 hl:load_avg=0.000000
 hl:load_short=0.000000
 hl:load_medium=0.000000

92

 hl:load_long=0.000000
 hl:mem_free=904.812M
 hl:swap_free=1.937G
 hl:virtual_free=2.821G
 hl:mem_used=106.520M
 hl:swap_used=0.000
 hl:virtual_used=106.520M
 hl:cpu=0.000000
 hl:m_topology=NONE
 hl:m_topology_inuse=NONE
 hl:m_socket=0.000000
 hl:m_core=0.000000
 hl:m_thread=0.000000
 hl:np_load_avg=0.000000
 hl:np_load_short=0.000000
 hl:np_load_medium=0.000000
 hl:np_load_long=0.000000

The current cluster utilization must always be seen in conjunction with the pending job list. If
there are no jobs waiting for resources, the utilization is already perfect from the DRM point of
view. The qstat command gives an overview of running and pending jobs. Running jobs are
in state r and pending jobs are in state qw (for queued waiting). The time of submission is
visible, depending on job status and the requested number of slots.

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 6 0.55500 sleep daniel r 04/14/2011 09:45:12 bq@macsuse 1
 7 0.55500 sleep daniel r 04/14/2011 09:45:12 bq@macsuse 1
 8 0.55500 sleep daniel qw 04/14/2011 09:44:25 1
 9 0.55500 sleep daniel qw 04/14/2011 09:44:25 1

More information about why certain jobs are not scheduler can be also retrieved by the
qstat command. A prerequisite for this is that in the scheduler configuration the
schedd_job_info parameter is set to true.

 Note
Note that enabling the scheduler output has implications to the overall performance of the
qmaster process and should be activated either in smaller clusters, where the qmaster host is
just slightly loaded or just temporary.

> qconf -msconf
...
schedd_job_info true

When there are any pending jobs the scheduling information can be viewed by a simple
qstat -j <jobno>

> qstat -j <jobno>
...
scheduling info: queue instance "all.q@SLES11SP1" dropped because it is full
 queue instance "all.q@u1010" dropped because it is full
 queue instance "all.q@cent48" dropped because it is full
 queue instance "all.q@macsuse" dropped because it is full
 queue instance "all.q@solaris10" dropped because it is full

93

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

In the output above, all queue-instances are already full and there are no more slots left.

3.3.2 Scaling the Reported Load

Sometimes load values have different meanings. The machine load average could be such
an example. It is defined by the number of processes in the operating systems running
queue. On a multi-cpu or multi-core host, usually multiple processes can be run at the same
time thus a load of 1.0 means that it is fully occupied on a one core machine while there are
still resources left on a multi-core machine. In order to resolve these issues, load report
values can be scaled on host level.

3.3.2.1 Example: Downscale load_short by a Factor of 10

Load scaling is host-specific therefore the host configuration must be adapted:

> qconf -me <hostname>
hostname <hostname>
load_scaling load_short=0.10000
...

The original execution host source values can still be seen in the host configuration
(load_short=0.08):

> qconf -se <hostname>
hostname <hostname>
load_scaling load_short=0.100000
complex_values NONE
load_values load_avg=0.060000,load_short=0.080000, \
 load_medium=0.060000,load_long=0.110000,arch=lx-amd64, \
 num_proc=1,mem_free=2742.671875M,swap_free=2053.996094M, \
 virtual_free=4796.667969M,mem_total=3144.273438M, \
 swap_total=2053.996094M,virtual_total=5198.269531M, \
 mem_used=401.601562M,swap_used=0.000000M, \
 virtual_used=401.601562M,cpu=73.800000,m_topology=SC, \
 m_topology_inuse=SC,m_socket=1,m_core=1,m_thread=1, \
 np_load_avg=0.060000,np_load_short=0.080000, \
 np_load_medium=0.060000,np_load_long=0.110000
...

The current scaled load values (load_short=0.008 in comparison to the source 0.08) are
shown by the qstat:

> qstat -l h=<hostname> -F load_short
queuename qtype resv/used/tot. load_avg arch states

all.q@<hostname> BIPC 0/0/20 0.06 lx-amd64
 hl:load_short=0.008000

 Note
The scaled load values are already available with the np_load_* values. They are scaled
using the number of reported processors (num_proc)

94

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

3.3.3 Alternative Means to Determine the Scheduling Order

After a default installation, the scheduler is configured in a way to choose the more available
hosts first for the new jobs. The scheduler configuration can be viewed with the qconf
-ssconf command.

> qconf -ssconf
...
queue_sort_method load
job_load_adjustments np_load_avg=0.50
load_adjustment_decay_time 0:7:30
load_formula np_load_avg
schedd_job_info false

The queue_sort_method determines the order of the queue-instances when they are
matched against the pending job list. Possible values for this attribute are load (default) and
seq_num. The load_formula describes load type and is calculated in case of the queue sort
method load.

3.3.3.1 Queue Sequence Number

When the queue_sort_method is changed to seq_num, the queue sequence number,
which is defined in the queue configuration attribute (qconf -mq <queue_name>)
determines the order in which the queued instances are chosen for the pending jobs.

3.3.3.1.1 Example: Defining the Queue Order

Create two queues a and b.

> qconf -aq a
> qconf -aq b

Disable queue all.q if it exists.

> qmod -d all.q

Set queue_sort_method to seq_no.

> qconf -msconf
...
queue_sort_method seq_no
...

Set the seq_no of queue a to 10 and seq_no of queue b to 20.

> qconf -mq a
qname a
hostlist @allhosts
seq_no 10
...

> qconf -mq b
qname b

95

hostlist @allhosts
seq_no 20
...

Submit some jobs. It can be observed that all jobs are running in queue a.

> qsub -b y sleep 120
> qsub -b y sleep 120
> qsub -b y sleep 120
> qsub -b y sleep 120

> qstat -g c
CLUSTER QUEUE CQLOAD USED RES AVAIL TOTAL aoACDS cdsuE
--
a 0.01 4 0 46 50 0 0
all.q 0.01 0 0 0 60 0 60
b 0.01 0 0 5 5 0 0

3.3.3.1.2 Example: Defining the Order on Queue Instance Level

Defining the queue order on queue level can be too vague when implementing specific
scheduling strategies. A queue could span a large number of hosts or even the whole cluster.
Therefore it is useful to define sequence numbers on queue instance levels (a queue
instance the part of a queue which sits on a specific host).

The order can be defined on queue instance level in the following way:

> qconf -mq a
qname a
hostlist @allhosts
seq_no 10,[host1=1],[host2=2],[host3=3]
...
slots 1
...

If 4 jobs are submitted, the first one is dispatched to host1, the second to host2 and so on.

> qsub -b y sleep 120
> qsub -b y sleep 120
> qsub -b y sleep 120
> qsub -b y sleep 120

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 4 0.55500 sleep daniel r 04/28/2011 14:31:36 a@host1 1
 5 0.55500 sleep daniel r 04/28/2011 14:31:36 a@host2 1
 6 0.55500 sleep daniel r 04/28/2011 14:31:36 a@host3 1
 7 0.55500 sleep daniel r 04/28/2011 14:31:36 a@host4 1

Here host1 takes precedence over host2 in queue a, and so on.

96

3.3.3.1.3 Example: Antipodal Sequence Numbering of Queues

A Univa Grid Engine-managed cluster is often populated by jobs with different priorities. In
many cases there are several extended I/O intensive (with a low load) batch jobs which are
not time sensitive, running simultaneously with a group of high priority jobs which require
immediate execution thus halting already-running jobs. In order to configure the cluster for
these two job types, two queues have to be added to the configuration. For simplicity, 3 hosts
are used within this example.

> qconf -mq low
qname low
hostlist @allhosts
seq_no 10,[host1=3],[host2=2],[host3=1]
...
slots 1
...

> qconf -mq high
qname high
hostlist @allhosts
seq_no 10,[host1=1],[host2=2],[host3=3]
...
slots 1
...

This example shows that the high queue suspends the low queue. The seq_no in both
configurations is now defined on queue instance layer with a reverse order respectively.
The net result is that jobs which are submitted to the high queue run first host1 then host2
and so on and jobs which are running in the low queue begin from the opposite end. This
means that jobs are suspended only when the cluster is fully utilized. A drawback in this
example is the problem of starvation. Low priority jobs which are running on hosts with a very
low sequence number for the high priority queue instance can remain suspended for a long
time when there are always some high prior jobs running. A more advanced approach is
showed in section Implementing Pre-emption Logic with the example Mixing exclusive high
priority jobs with low priority jobs.

3.4 Managing Capacities

Administrators are often faced with the problem, that the number of resources used at the
same point in time has to be limited for different consumers in order to map given business
rules into a Univa Grid Engine cluster installation. Univa Grid Engine includes several
modules for limiting capacities of the managed resources. The main concepts to ensure
these limits in Univa Grid Engine are the resource quota sets and the consumables, which
are illustrated in more detail below.

3.4.1 Using Resource Quota Sets

With resource quota sets the administrator is able to restrict different objects, like users,
projects, parallel environments, queues, and hosts with a different kind of limit. Limits can be
static, with a fixed value, or dynamic, which is a simple algebraic expression. All
currently-defined resource quota sets can be shown with the qconf -srqsl. After a default

97

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

installation, no resource quota set is defined.

>qconf -srqsl
no resource quota set list defined

Resource quotas can be added withqconf -arqs, modified with qconf -mrqs myname,
and deleted with qconf -drqs myname.

A resource quota set has the following basic structure:

{
 name myresourcequotaset
 description Just for testing.
 enabled TRUE
 limit users to slots=2
}

The name denotes the name of the rule, it should be short and informative because this
name can be seen in the qstat -j <jobno> output as the reason why a specific job is not
processed in the last scheduled run (Note: schedd_job_info must be turned on in the
scheduler (see TODO)).

>qstat -j 3
...
scheduling info: cannot run because it exceeds limit "/////" in rule "myresourcequotaset/1"
...

The description can contain more detailed information about the limits. This becomes
important especially when the cluster configuration grows in order to keep track of all defined
rules. It should describe the rules in a way that even after years the purpose of the rules can
be seen immediately.

The enabled field determines whether the rule is enabled (TRUE) or disabled (FALSE). Hence
rules do not have to be deleted and restored as a whole, but can turned off and on,
simplifying the handling of resource quota sets.

The entry which defines a rule starts with the keyword limit. In the first example above, each
user is limited to the use of 2 slots at a time. If a user has, for example, 3 jobs submitted, one
job will stay in waiting state (qw state) until the first job finishes. The scheduler ensures that
not more than 2 slots are occupied by one user at the same time.

It is allowed to arrange more limit rules among one another. If multiple limits matches, the first
match wins.

{
 name myresourcequotaset
 description Just for testing
 enabled TRUE
 limit users to slots=2
 limit users to slots=1
}

98

The first limit in this example which matches a user is users to slots=2 hence a user is
allowed to run 2 sequential jobs in parallel.

Limits can have a name which must be unique within one resource quota set:

{
 name myresourcequotaset
 description Just for testing
 enabled TRUE
 limit name slot2rule users to slots=2
 limit name slot1rule users to slots=1
}

Objects, which can be restricted are users, projects, pes, queues, and as well as hosts. In
order to specify entities within these objects, the { } notation can be used. Special values
are the asterisk {*}, which means all, the exclamation mark {!}, which can be used to exclude
entities, as well as the combination of both {!*}, which are all entities which have not
requested the specific object.

In the following example user1 and user2 (each of them) are restricted to use 2 slots of the
parallel environment mytestpe at the same time.

{
 name myresourcequotaset
 description Just for testing
 enabled TRUE
 limit users {user1,user2} pes { mytestpe } to slots=2
}

In order to limit all users to have at most 100 serial job running in the system, but unlimited
parallel jobs, the rule below can be used.

{
 name myresourcequotaset
 description Just for testing
 enabled TRUE
 limit users {*} pes {!*} to slots=100
}

The limit after the to keyword can be any complex (see TODO) defined in the system. In
order to define rules, which are different for specific hosts, dynamic complexes can be used.

The following example limits the number of slots on each host to the number of available
cores:

{
 name myresourcequotaset
 description Just for testing
 enabled TRUE
 limit hosts {*} to slots=$m_core
}

99

3.4.2 Using Consumables

Consumables are complexes with an additional counting behavior. They can be identified
through the consumable column, when displaying the complexes with qconf -sc. In a
default installation only one (special) consumable is defined - the slots complex.

>qconf -sc
#name shortcut type relop requestable consumable default urgency
#--
...
slots s INT <= YES YES 1 1000
...

The best way to think about consumables is to consider them as counter variables, which can
have any semantic one can imagine. These consumables can be defined on different layers:
When they are initialized on the host level they can limit the number of consumers on
specific hosts. If they are initialized in queues they limit the use of specific queue instances,
and when they are added in global configuration (qconf -me global) they limit the usage
of this resource for each job.

A common task is to handle special hardware devices for a cluster and to make them
available for the Univa Grid Engine. In the following example, a group of execution hosts are
upgraded with GPU cards in order to support special numerical computational jobs.

Host Consumable Example: Adding a GPU into the cluster

In the current cluster, 3 execution hosts are defined and one of the them host1 with the
additional GPU processing facility.

> qhost
HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
host1 lx26-amd64 4 0.00 934.9M 134.1M 1004.0M 0.0
host2 lx26-amd64 4 0.02 2.0G 430.9M 2.0G 0.0
host3 lx26-amd64 4 0.00 492.7M 41.6M 398.0M 0.0

As the first step a new consumable must be added in the complex table.

> qconf -mc
#name shortcut type relop requestable consumable default urgency
#--
GPU gpu INT <= YES YES 0 1000

Because this consumable is host-dependent (and not queue-dependent), it must be initialized
per host. The execution server configuration must be edited and the new GPU complex value
1 is added.

> qconf -me host1
hostname host1

100

load_scaling NONE
complex_values GPU=1
user_lists NONE
xuser_lists NONE
projects NONE
xprojects NONE
usage_scaling NONE
report_variables NONE

Now the value can be seen by the qstat output:

> qstat -F GPU

queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/0/10 0.00 lx26-amd64
 hc:GPU=1

all.q@host2 BIPC 0/0/10 0.00 lx26-amd64

all.q@host3 BIPC 0/0/10 0.00 lx26-amd64

In order to request the GPU consumable the user must specify the attribute on job submission
time.

> qsub -b y -l GPU=1 sleep 100
Your job 4 ("sleep") has been submitted

Now check the host consumable again:

> qstat -F GPU
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/1/10 0.00 lx26-amd64
 hc:GPU=0
 4 0.55500 sleep daniel r 03/04/2011 10:17:21 1

all.q@host2 BIPC 0/0/10 0.00 lx26-amd64

all.q@host3 BIPC 0/0/10 0.00 lx26-amd64

If a second GPU job is started, then let the scheduler run again (-tsm):

> qsub -b y -l GPU=1 sleep 100
Your job 5 ("sleep") has been submitted

> qconf -tsm
daniel@hostname triggers scheduler monitoring

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 4 0.55500 sleep daniel r 03/04/2011 10:17:21 all.q@host1 1
 5 0.55500 sleep daniel qw 03/04/2011 10:17:28

101

The second job, which requests a GPU stays in waiting state until the first GPU job finishes,
since there is no other host with a GPU consumable configured.

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 5 0.55500 sleep daniel r 03/04/2011 10:19:07 all.q@host1 1

Queue Consumable Example: Adding a multiple GPUs on cluster hosts

This example illustrates how to use queue consumables. Queue consumables can be used
when resources should be split up between several queues. Imagine that two GPU cards are
added to an execution host. Using the approach above with an higher counter (two instead of
one) works just fine, but the jobs have to negotiate the GPU used (GPU0 or GPU1). One
approach to solve this issue would be for the administrator to provide a script on the
execution host which then provides the GPU number for the job. In order to handle this with
Univa Grid Engine, queue consumables can be used.

Like stated above, the GPU complex must first be added in the complex list with qconf -mc.
In contrast to a host complex, the initial value has to be define on queue layer. Therefore two
queues, each representing one GPU, must be added and initialized properly.

> qconf -aq gpu0.q
qname gpu0.q
hostlist host1
...
slots 10
...
complex_values GPU=1
...

> qconf -aq gpu1.q
qname gpu0.q
hostlist host1
...
slots 10
...
complex_values GPU=1
...

The complex_values entry can also set different values for each queue instance. If on some
hosts GPU pairs should be requestable by just one job the complex_values entry could look
like the the following: GPU=1,[host2=GPU=2].

The hosts entry contains all hosts with two GPUs installed, the complex_values entry is
used for initializing the GPU value. The values can now be seen in the qstat output:

102

> qstat -F GPU
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/0/20 0.23 lx-amd64

all.q@host2 BIPC 0/0/10 0.08 lx-x86

all.q@host3 BIPC 0/0/10 0.04 lx-amd64

all.q@host4 BIPC 0/0/10 0.04 lx-amd64

gpu0.q@host1 BIP 0/0/10 0.23 lx-amd64
 qc:GPU=1

gpu1.q@host1 BIP 0/0/10 0.23 lx-amd64
 qc:GPU=1

Now jobs can be submitted with requesting the queue consumable:

> qsub -S /bin/bash -l gpu=1 gpu.sh

The gpu.sh is like the following:

#!/bin/bash

if ["x$QUEUE" = "xgpu0.q"]; then
 echo "Using GPU 0"
fi

if ["x$QUEUE" = "xgpu1.q"]; then
 echo "Using GPU 1"
fi

sleep 100

After the job is scheduled the qstat shows, which queue and therefore which GPU is
selected:

> qstat -F gpu
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/0/20 0.23 lx-amd64

all.q@host2 BIPC 0/0/10 0.08 lx-x86

all.q@host3 BIPC 0/0/10 0.04 lx-amd64

all.q@host4 BIPC 0/0/10 0.04 lx-amd64

gpu0.q@host1 BIP 0/1/10 0.05 lx-amd64
 qc:GPU=0
 5 0.55500 gpu.sh daniel r 04/19/2011 08:58:08 1

gpu1.q@host1 BIP 0/0/10 0.05 lx-amd64
 qc:GPU=1

The output of the job is:

103

Using GPU 0

When 3 jobs are submitted each requesting a GPU, only 2 will run at the same time. The third
one is rejected because 2 GPUs are available. If the scheduler information is turned on
(qconf -msconf) the reason why the third job remains pending can be seen immediately:

> qstat -j <jobno>
...
 (-l GPU=1) cannot run in queue "gpu0.q@host1" because it offers only qc:GPU=0.000000
 (-l GPU=1) cannot run in queue "gpu1.q@host1" because it offers only qc:GPU=0.000000

3.5 Implementing Preemption Logic

Preemption is the action of suspending a job in order to free computational resources and
resume the job at a later time. The reasons can be different: to avoid thrashing or to give jobs
of higher priority precedence. Preemption can be configured in Univa Grid Engine on different
places and can have different meanings. Limits can be set between different queues so that
once queue gains precedence over another, jobs within the queue of higher priority can
trigger the suspension of jobs of lower priority in the queue. Furthermore, suspension
thresholds within a queue can be defined with the result that whenever the limits are
exceeded, jobs are suspended. Additionally the Univa Grid Engine calendar is able to
suspend resources. In this section the queue-wise suspension feature is explained in detail.

3.5.1 When to Use Preemption

Queue wise subordination can be used whenever jobs have to be grouped into different
priority classes. Jobs of a certain class are submitted into the corresponding queue.
Whenever a certain limit of jobs of high priority in a queue has been reached, the jobs of
lower priority (i.e. the jobs within the subordinate queues) are suspended. After the jobs of
higher priority are completed, the suspended jobs will be reinstated. Suspending and
reinstating jobs is usually performed by sending the SIGSTOP and SIGCONT signal to the
user jobs. In the queue configuration attribute suspend_method and resume_method the
path to a self-defined script/executable can be added, which overrides the default signals with
a user defined suspension/reinstatement behavior. Within this script, different
suspend/resume methods for different jobs can be defined. In the case that a different signal
for all jobs is needed, the job signal name (SIG*) can be used.

3.5.2 Utilizing Queue Subordination

Queue subordination is defined in the queue configuration, which can be modified through
the qconf -mq <queuename> command. The related attribute for subordination definitions
is named subordinate_list. The syntax is:

<queuename>=<slots>, <queuename2>=<slots>, ...

where the queue name denotes the subordinated queue (the lower priority queue) and slots
is the threshold value which triggers the suspension of the subordinate queue.

In case the limits should be different for specific hosts, the following syntax can be used:

104

<queuename>=<default_slots>, [<queuename>@<host>=<slots>]

3.5.2.1 Example: Suspend all low priority jobs on a host whenever a job is running in
the high priority queue

First create the low priority queue:

> qconf -aq low.q

 qname low.q
 hostlist @allhosts
 slots 10

Create the high priority queue with a slot limit of 1 (when 1 slot is used in the upper queue to
suspend the lower queue).

> qconf -aq high.q

 qname high.q
 hostlist @allhosts
 slots 10
 subordinate_list low.q=1

Now submit a job into the subordinate queue on host1:

> qsub -q low.q@host1 -b y sleep 240

See that the job is running:

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 4 0.55500 sleep daniel r 05/17/2011 15:36:04 low.q@host1 1

Submit the high priority job:

> qsub -q high.q@host1 -b y sleep 240

After the job is dispatched, the job in the lower priority queue suspends immediately.

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

 4 0.55500 sleep daniel S 05/17/2011 15:36:04 low.q@host1 1
 5 0.55500 sleep daniel r 05/17/2011 15:36:14 high.q@host1 1

3.5.3 Advanced Preemption Scenarios

Job suspension can come with the price of a lower overall cluster utilization. The following
scenario makes this clear:

The cluster consists of two hosts on which a high.q and a low.q is defined. The high.q
subordinates the low.q with a limit of 2 which means that whenever two or more jobs are

105

running in the high.q on a specific host the low.q on that host is subordinated. On both
hosts one job is running in the low.q. Additionally on host1, one job is in high.q. If now a
second job of higher priority is submitted, it does not in all cases run on host2. If for example
the queue sort method is load and the two jobs on host1 produce less load than the one
job on host2, then the fourth job is scheduled on host1 with the net result that the job of
lower priority is suspended. No suspension would result if the job runs on host2.

Usually having the queue instances sorted by load is good way to prevent subordination. But
this is not true in all cases. The following example shows how to combine the queue sort
method seq_no and the exclusive queue feature together with queue-wise subordination.

3.5.3.1 Example: Mixing exclusive high priority jobs with low priority jobs

In the following scenario, a computer cluster of 8 hosts is used by two different groups:
researchers and students. Usually the researchers have just one or two jobs running while
the students must do their assignments on the cluster. Therefore two hosts are reserved for
the researchers (as students should not to have access to these machines) and the
remaining 6 hosts are used by the students. The researchers want to have their machines
exclusively if a job (with using 1 or more slots) is running which means a mix of different
researcher jobs on one machine is also not allowed. In some rare cases the researchers
have much more work, therefore it should be possible that in such circumstances, they can
access the machines of the students. But when there are just a few student jobs running, the
risk of suspending these jobs should be minimized. All this can be expressed in Univa Grid
Engine in the following way:

because research job need machines exclusively: the exclusive queue complex
(consumable) is needed

•

two queues are needed: research.q and student.q•
research jobs should be able to suspend student jobs: queue wise subordination must
be configured

•

research jobs should first use their own hosts and if this is not enough, student hosts
are accessed: queue sort method seq_no

•

3 specific student hosts should be the last resort for research jobs: queue sorting of
student queue should be diverted to the sort method of the research hosts

•

The configuration is done in the following way:

Create qexlusive queue consumable (complex).

> qconf -mc
#name shortcut type relop requestable consumable default urgency
#--
qexclusive qe BOOL EXCL YES YES 0 4000

Create the student.q:

> qconf -aq student.q
qname student.q
hostlist host3 host4 host5 host6 host7 host8
seq_no 10,[host3=4],[host4=3],[host5=2],[host6=1],[host7=1],[host8=1]
...

106

slots 4

Create the research.q which subordinates student.q:

> qconf -aq research.q
qname research.q
hostlist host1 host2 host3 host4 host5
seq_no 10,[host1=1],[host2=1],[host3=2],[host4=3],[host5=4]
slots 4
...
subordinate_list student.q=1
...

Change the scheduler configuration:

> qconf -ms
...
queue_sort_method seqno
...

Now the researchers have to request the research.q together with the qexclusive
complex and the students have to request student.q. This can be enforced by using
request files or the JSV facility.

3.6 Integrating Univa Grid Engine With a License
Management System

Many applications being run under Univa Grid Engine control are licensed applications, in
many cases they come with a license manager application.

Licenses are configured as consumable resources in Univa Grid Engine, see also
Concepts_and_Components#Expressing_Capabilities_and_Capacities and
Special_Activities#Using_Consumables.

Once a consumable has been created as a license counter, its capacity needs must be set.
There are different ways to set the capacity (the available licenses) in Univa Grid Engine:

Consumable only counter1.

Set the capacity (the maximum number of available licenses) in the exec host object,
for site licenses in the global host, for node locked licenses in the specific exec host.

Univa Grid Engine will keep track of the licenses in use by jobs, no jobs requesting a
license will be started if the licenses are exceeded.

The easiest and most precise way of handling licenses is if licenses are only
consumed by Univa Grid Engine jobs. It is not suited for situations with both
interactive and batch license use.

Using only external values (load sensor)2.

107

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

A load sensor is used to report license usage. See main page sge_execd(8) for
information about load sensors, examples for load sensors are in
$SGE_ROOT/util/resources/loadsensors.

The load sensor is called at regular intervals (load_report_interval configured in the
cluster configuration), it queries the license manager for the available number of
licenses and reports this number to Univa Grid Engine.

This setup works in clusters with low job throughput and jobs of longer duration. With
higher job throughput or frequent interactive license use, it suffers from race
conditions:

When licenses are consumed interactively, it takes some time (the load report
interval) until the load sensor reports the license usage.

®

When a job is started, a license is not immediately consumed. During this time
period, further jobs requesting a license may be started.

®

Combining consumable with load sensor3.

This setup is combining approaches 1. and 2.: Univa Grid Engine keeps track of
licenses with the consumable counter, and the actual license usage is reported by a
load sensor.

The Univa Grid Engine scheduler will take the minimum of internal license booking
and load value as the number of available licenses.

With this setup, interactive license usage is taken into account, and license
overbooking due to jobs not immediately drawing licenses is avoided.

Interactive license usage is still reported to Univa Grid Engine by the load sensor with
some delay, overbooking licenses due to interactive license usage can still occur.

Setting the capacity by an external program4.

A different approach to reducing the time window for race conditions to a minimum is
by using an external component to monitor the license usage and dynamically setting
the license capacity in the Univa Grid Engine exec host object.

One example of such an external component is the qlicserver.

3.6.1 Integrating and Utilizing QLICSERVER

Qlicserver is a utility for monitoring licenses managed by the FLEXlm license manager and
for controlling interactive vs. batch job license usage.

It allows the administrator to configure the number of licenses used by Univa Grid Engine
jobs, and sets the number of available licenses by configuring the capacity of Univa Grid
Engine consumables.

108

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

The qlicserver has been developed by Marc Olesen and published under a Creative
Commons License.

The following text describes in short the steps required for setting up the qlicserver:

download the flex-grid tar.gz from http://olesenm.github.com/flex-grid•
unpack it to some temporary directory•
copy olesen-flex-grid-*/site to $SGE_ROOT/$SGE_CELL•
configure qlicserver (qlicserver.config, qlicserver.limits)•
create the necessary Univa Grid Engine consumables•
startup qlicserver•

A detailed installation and configuration guide is available at
http://wiki.gridengine.info/wiki/index.php/Olesen-FLEXlm-Integration

3.7 Managing Priorities and Usage Entitlements

The influence of all policy weights on the final priority
Mapping of business rules into the cluster usage is a crucial demand of companies with a
computer cluster shared by different entities. Univa Grid Engine supports this through
different scheduling policies. These policies influence the final order of the job list, which is
processed by the scheduler. Within this order, the scheduler dispatches the jobs to the
computer nodes, hence jobs at the top of the list have a greater chance of obtaining
resources earlier than jobs at the end of the list. Jobs that cannot be dispatched to a
computer node due to the lack of resources are deferred to the next scheduling run. This
section describes the different policies, which influences the job order list. There are three
general groups of priorities from which the final priority value is derived: ticket-based
priorities, urgency-based priorities, and the POSIX priority. Further information can be found
in the man pages sched_conf and sge_priority.

3.7.1 Fair-Share (Share Tree) Ticket Policy

The fair-share or share-tree policy allows that the usage shares from a Univa Grid Engine
cluster can be defined in a hierarchical tree structure (see also man sharetree). The main
characteristic of this policy is that past job usage is taken into account. Each node of the tree

109

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

structure sets a number of tickets, which a certain project or user owns. The share tree is
managed with the qconf command through various command line arguments:

-astree creates or modifies a share-tree•
-Astree creates or modifies share-tree through a given file•
-clearusage clears historic usage data•
-dstnode deletes a certain node•
-dstree deletes the complete share-tree•
-mstnode allows to modify a share-tree node•
-Mstree creates or modifies a share-tree through a given file•
-mstree create of modifies a share-tree•
-sstnode shows a specific share-tree node•
-rsstnode shows a specific share-tree node and its children•
-sst shows a formatted share-tree•
-sstree shows the share-tree•

A share-tree node consists of an ID, the name, type, shares and the childnodes. An entry
starts with a unique numeric ID. The node can have one of two types: User node (type=0) or
project node (type=1). The name is a string representing the corresponding name of a project
or user, while shares defines the absolute importance of the node. The childnodes entry is a
comma-separated list of the IDs of the children.

In the following example a simple share-tree with 2 users, one with a 70% share and one with
a 30% share is created:

> qconf -astree
 id=0
 name=Root
 type=0
 shares=1
 childnodes=1,2
 id=1
 name=user1
 type=0
 shares=70
 childnodes=NONE
 id=2
 name=user2
 type=0
 shares=30
 childnodes=NONE

The share-tree can be viewed with:

> qconf -sst
Root=1
 user1=70
 user2=30

In Univa Grid Engine, different policies can be active at the same time. Therefore it is
required to give the share-tree policy a weight (here: tickets) within these policies. In a
default installation there are 0 tickets available. This needs to be modified in the scheduler

110

configuration (see man sched_conf).

> qconf -msconf
...
weight_tickets_share 1000
...

Now this policy can be tested, but first the previous usage must be cleared, because the
policy also takes past usage into account:

> qconf -clearusage

In order to view the current job list better, the queues can be disabled (in the test cluster).
This prevents the dispatch of jobs into the next scheduled run.

> qconf -d all.q

If two jobs are submitted, one as user1 and one as user2, the tickets can be seen in a
qstat output:

> qstat -ext -u *
job-ID prior ntckts name user ... tckts ovrts otckt ftckt stckt share queue slots ja-task-ID
--
 213 0.01000 1.00000 sleep user1 ... 70 0 0 0 70 0.70 1
 214 0.00429 0.42857 sleep user2 ... 30 0 0 0 30 0.30 1

The stckt column shows the number of tickets granted through the share-tree policy. In this
example the job of user1 70 tickets and the job of user2 30 tickets are granted. This results
in an overall priority (prior) of 0.01 versus 0.00429.

When a second job as user1 is submitted it receives 35 tickets, which is half of the tickets.
The third job would receive a third and so on. The second job of user2 has 15 tickets,
therefore all jobs of the first user takes precedence over the jobs of user2, within this first
round. After a time, accounting comes into play. The nature of the behavior can be seen in
the picture Share Compensation.

111

Share Compensation
In this picture two users can be seen, user 1 with 70 shares and user 2 with 30 shares. At
the beginning are several jobs from user 1 submitted, but almost none from user 2. This
means that despite the 70/30 distribution, user 1 is using 90% of the cluster while user 2 has
just some jobs and therefore a share of 10%. After a period of time, user 2 begins to submit
more jobs. His jobs are now more important (see compensation area) than the user 1 jobs in
order to achieve fairness (the 70/30 distribution) over time.

3.7.1.1 Halftime and Compensation Factor

In the share-tree policy, past usage is taken into account. The influence of historical usage
decreases from time to time. The halftime attribute in the scheduler configuration (qconf
-msconf) specifies how long it will take until the past usage loses half of the influence. If the
value is 0 the influence will not decrease, other values are time values in hours.

Modification of the halftime value:

> qconf -msconf
...
halftime 168
...

The compensation_factor determines how quickly the past usage is compensated for
over time. The values must be between 2 and 10, where 2 is the slowest and 10 the fastest
compensation.

Modification of the compensation factor:

> qconf -msconf
...
compensation_factor 5.000000

112

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

...

3.7.2 Functional Ticket Policy

The functional policy is derived in each scheduler run from scratch and does not incorporate
any historical data. It is based on four entities: the submitting user, the job itself, the project
in which the job is running, and the department of the user. Each of these is assigned an
arbitrary weight in order to map the desired business rules into the functional policy.

The policy is turned on in the scheduler configuration with setting
weight_tickets_functional to an high value. The value determines how many tickets
are distributed.

> qconf -msconf
...
weight_tickets_functional 1000

The relative weight of all entities is configured through the weight values
weight_user,weight_project,weight_department, and weight_job, which must
add up to 1. Because ticket calculation takes time in a scheduling run, the number of jobs
considered for the functional ticket policy can be limited with the
max_functional_jobs_to_schedule parameter. The share_functional_shares
parameter determines if each job entitled to functional shares receive the full number of
tickets or if the tickets are distributed amongst the jobs.

The shares can be configured in the Univa Grid Engine objects itself. In the following
example, the shares of two projects are modified in a way that mytestproject receives 70
shares and mytestproject2 receives 30 shares.

> qconf -mprj mytestproject
name mytestproject
...
fshare 70
...

> qconf -mprj mytestproject2
name mytestproject
...
fshare 30
...

The share of the user is modified similarly through qconf -mu <username> with adapting
fshare there. Departments are a special form of user access lists, with the ability to specify
functional shares. They can be modified through the qconf -mu <departmentname>
command. Job shares are assigned at the time of submission with the -js qsub parameter.

In the case where there is more than one job per user in the pending job list at time of
scheduling, the full number of calculated tickets is just available to the first job of a user. The
second job receives just 1/2 of the number of tickets, the third 1/3 and the n'th job get 1/n of
the calculated number of tickets.

113

3.7.3 Override Ticket Policy

The override ticket policy is very helpful for temporary changes in the overall scheduling
behavior. With this policy an administrator can grant extra tickets on the following entities:
users, departments, projects and pending jobs. It allows a temporary override of a configured
and applied policy like the share tree or functional ticket policy. The advantage is that the
other policies don't need to be touched just to obtain precedence for special users or projects
for a short amount of time.

The override tickets are directly set in the objects such as in the functional ticket policy with
the difference that the attribute value is named oticket. For granting the extra tickets on job
level the pending jobs can be altered with the -ot <ticketamount> option.

Example:

The pending job list with granted tickets from the functional policy looks like the following:

> qstat -ext -u *
job-ID prior ntckts name user project ... tckts ovrts otckt ftckt stckt ...

 620 1.00000 1.00000 sleep daniel mytestproject2 ... 1000 0 0 1000 0
 615 0.45000 0.45000 sleep daniel mytestproject2 ... 450 0 0 450 0
 616 0.30000 0.30000 sleep daniel mytestproject2 ... 300 0 0 300 0
 617 0.22500 0.22500 sleep daniel mytestproject2 ... 225 0 0 225 0
 618 0.18000 0.18000 sleep daniel mytestproject2 ... 180 0 0 180 0
 619 0.15000 0.15000 sleep daniel mytestproject2 ... 150 0 0 150 0

All jobs have just functional project tickets (900), while job 620 has an additional 100
functional user tickets. 620 is the highest priority job hence it gets all 1000 (900 + 100)
tickets. The second job of the user has just project tickets (900), but because it is job 2 and
receives 1/2 of the tickets (450). Job 616 receives a third (300) and so on.

Now job 619 with total number of 150 tickets (tckts) is boosted with by the override policy by
adding 1000 override tickets. This can only be done by the operator or administrator of the
cluster:

> qalter -ot 1000 619
admin@host1 sets override tickets of job 619 to 1000

> qstat -ext -u *
job-ID prior ntckts name user project ... tckts ovrts otckt ftckt stckt ...

 619 0.15000 0.15000 sleep daniel mytestproject2 ... 1900 1000 1000 900 0
 620 1.00000 1.00000 sleep daniel mytestproject2 ... 550 0 0 550 0
 615 0.45000 0.45000 sleep daniel mytestproject2 ... 300 0 0 300 0
 616 0.30000 0.30000 sleep daniel mytestproject2 ... 225 0 0 225 0
 617 0.22500 0.22500 sleep daniel mytestproject2 ... 180 0 0 180 0
 618 0.18000 0.18000 sleep daniel mytestproject2 ... 150 0 0 150 0

The job receives 1000 tickets of the override policy and additionally 900 by the functional
ticket policy (project tickets). They are now fully counted because the job is of the highest
priority for the user. Job 620 receives 100 functional user tickets and 450 functional project

114

tickets. The rest of the jobs have just functional project tickets.

3.7.4 Urgency Policy

The urgency policies can be distinguished in two groups, depending if the urgency is time or
resource based. The time based urgency are the wait time urgency and the deadline
urgency. In Univa Grid Engine there is just one: a very flexible resource-based urgency.

3.7.4.1 Wait Time Urgency

Most computer resources tend to be occupied thereby forcing low priority jobs to remain on
the pending job list (in 'qw' state). While this is the desired behavior due to other policy
configuration, the problem of job starvation can arise. The wait time urgency addresses this
problem by adding priority to jobs over time. This mean that the priority of a job can be
increased relative to the length of time it has spent on the job pending queue.

The wait time urgency is configured in the scheduler configuration:

> qconf -ssconf
...
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

The relevance can be adjusted relatively to the result of all ticket policies in combination
(weight_ticket), the deadline policy (weight_deadline), the urgency policy
(weight_urgency), and the POSIX priority (weight_priority).

3.7.4.2 Deadline Urgency

The deadline urgency comes into play when jobs are submitted with a special deadline
(qconf -dl). The deadline denotes the last point in time when the job should be scheduled.
Hence the urgency grows from the time of submission until that time continuously. In order to
submit jobs with a deadline the user must be configured in the deadlineusers list. The
reason for this is to prevent the abuse of this functionality by certain unauthorized users. The
weight of the urgency itself is configured in the scheduler configuration:

> qconf -ssconf
...
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 0.000000

The high value is grounded in the calculation of the deadline contribution value:

deadline contribution = max(weight_deadline / seconds till deadline
is reached , weight_deadline)

115

When the deadline is missed the weight_deadline is taken in contribution value. The
rapid increase of this value prioritizes those jobs with the most pressing deadlines.

3.7.4.2.1 Example

In the following example, a user is added to the deadlineusers list. Afterwards 3 jobs are
submitted, one without a deadline and the second with a deadline a few minutes in the future,
and the third with a few hours in the future.

> qconf -mu deadlineusers
name deadlineusers
type ACL
fshare 0
oticket 0
entries daniel

> qsub -b y sleep 100
Your job 33 ("sleep") has been submitted

> qsub -b y -dl 201105041410 sleep 100
Your job 34 ("sleep") has been submitted

> qsub -b y -dl 201105050000 sleep 100
Your job 35 ("sleep") has been submitted

The urgency can be viewed with the qstat parameter -urg:

> qstat -urg
job-ID prior nurg urg rrcontr wtcontr dlcontr name ... submit/start at deadline ...

 34 0.60500 1.00000 12215 1000 0 11215 sleep ... 05/04/2011 14:04:17 05/04/2011 14:10:00
 35 0.50590 0.00899 1101 1000 0 101 sleep ... 05/04/2011 14:04:35 05/05/2011 00:00:00
 33 0.50500 0.00000 1000 1000 0 0 sleep ... 05/04/2011 14:04:03

After a few seconds, the different growths of the deadline contribution can be seen:

> qstat -urg
job-ID prior nurg urg rrcontr wtcontr dlcontr name ... submit/start at deadline
--
 34 0.60500 1.00000 24841 1000 0 23841 sleep ... 05/04/2011 14:04:17 05/04/2011 14:10:00
 35 0.50542 0.00425 1101 1000 0 101 sleep ... 05/04/2011 14:04:35 05/05/2011 00:00:00
 33 0.50500 0.00000 1000 1000 0 0 sleep ... 05/04/2011 14:04:03

3.7.4.3 Resource-Dependent Urgencies

With resource-dependent urgencies it is possible to prioritize jobs depending on the
resources (complexes) that are requested. Sometimes it is desirable to have valuable
resources always occupied while cheaper resources remain unused for a specific time.
Therefore jobs requesting the valuable resources may obtain these urgencies in order to get
a higher position in the scheduler list. The priority of a resource is defined in the last column
of the complex configuration:

> qconf -mc
#name shortcut type relop requestable consumable default urgency

116

#--
arch a RESTRING == YES NO NONE 0
calendar c RESTRING == YES NO NONE 0
...
slots s INT <= YES YES 1 1000

As shown, the slots complex has an urgency of 1000 while all other resources have an
urgency of 0 in a default configuration. The reason why slots has a pre-defined urgency is
that it is more difficult for parallel jobs, which require more slots, to have requests filled than it
is for sequential jobs. The urgency value is taken into account for a job only when it requests
it as a hard resource request (in difference to a soft resource request).

The weight is again configured in the scheduler configuration:

> qconf -ssconf
...
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

3.7.5 User Policy: POSIX Policy

The POSIX policy (also called custom policy) is defined per job at the time of job submission.
The responsible qsub parameter is -p <value>. Possible values are those from -1023 to
1024, while values above 0 can be set by the administrator only. This feature is perfect for
the user to bring a specific order to his own jobs.

3.7.5.1 Example

In the following example, several jobs with different priorities are submitted as administrator
(which allows also positive priorities).

> qsub -b y -p 1 sleep 60
Your job 6 ("sleep") has been submitted

> qsub -b y -p 10 sleep 60
Your job 7 ("sleep") has been submitted

> qsub -b y -p 100 sleep 60
Your job 8 ("sleep") has been submitted

> qsub -b y -p 1000 sleep 60
Your job 9 ("sleep") has been submitted

When trying to submit with an invalid priority, the following error message appears:

> qsub -b y -p 10000 sleep 60
qsub: invalid priority 10000. must be an integer from -1023 to 1024

> qsub -b y -p -1 sleep 60
Your job 10 ("sleep") has been submitted

117

> qsub -b y -p -10 sleep 60
Your job 11 ("sleep") has been submitted

> qsub -b y -p -100 sleep 60
Your job 12 ("sleep") has been submitted

> qsub -b y -p -1000 sleep 60
Your job 13 ("sleep") has been submitted

The effect of the priorities can be seen with the qstat command:

> qstat -pri
job-ID prior nurg npprior ntckts ppri name user state submit/start at ...

 9 1.04328 0.50000 0.98828 0.50000 1000 sleep daniel qw 05/05/2011 09:09:47
 8 0.60383 0.50000 0.54883 0.50000 100 sleep daniel qw 05/05/2011 09:09:44
 7 0.55988 0.50000 0.50488 0.50000 10 sleep daniel qw 05/05/2011 09:09:41
 6 0.55549 0.50000 0.50049 0.50000 1 sleep daniel qw 05/05/2011 09:09:36
 4 0.55500 0.50000 0.50000 0.50000 0 sleep daniel qw 05/05/2011 09:09:21
 10 0.55451 0.50000 0.49951 0.50000 -1 sleep daniel qw 05/05/2011 09:09:58
 11 0.55012 0.50000 0.49512 0.50000 -10 sleep daniel qw 05/05/2011 09:10:01
 12 0.50617 0.50000 0.45117 0.50000 -100 sleep daniel qw 05/05/2011 09:10:04
 13 0.06672 0.50000 0.01172 0.50000 -1000 sleep daniel qw 05/05/2011 09:10:08

A job submitted without any priority (job 4) has the priority 0, which results in a normalized
priority value (npprior) of 0.5. The lower the priority, the lower the normalized value. The
absolute weight of the POSIX priority is again defined in the scheduler configuration.

> qconf -ssconf
...
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

3.8 Advanced Management for Different Types of
Workloads

3.8.1 Parallel Environments

Univa Grid Engine supports the execution of shared memory or distributed memory parallel
applications. Such parallel applications require some kind of parallel environment.

Examples for such parallel environments are:

shared memory parallel operating systems•
the distributed memory environments named Message Passing Interface (MPI)•
the distributed memory environments named Parallel Virtual Machine (PVM).•

These environments are either provided by hardware vendors or in different forms as open
source software. Depending on implementation, its characteristics and requirements, these

118

parallel environments need to be integrated differently as to be used in combination with our
software.

Univa Grid Engine provides an adaptive object to integrate parallel environments into the
system. The administrator of a Univa Grid Engine system has to deploy such objects with the
help of predefined scripts as part of the distribution so that users can easily deploy parallel
jobs. Note that the administrator has the ability to:

define access rules that allow or deny the use of a parallel environments•
define boundary conditions how the resources are consumed within a parallel
environment.

•

limit access to a parallel environment by reducing the number of available slots or
queues

•

3.8.1.1 Commands to Configure Parallel Environment Object

To integrate arbitrary parallel environments with Univa Grid Engine it is necessary to define a
set of specific parameters and procedures for each. Parallel environment objects can be
created, modified or deleted with the following commands.

qconf -ap pe_name
This is the command to add a parallel environment object. It opens an editor and
shows the default parameters for a parallel environment. After changing, saving
necessary values and closing the editor, a new environment is created.

•

qconf -Ap filename
Adds a new parallel environment object whose specification is stored in the specified
file.

•

qconf -dp pe_name
Deletes the parallel environment object with the given name.

•

qconf -mp pe_name
Opens an editor and shows the current specification of the parallel environment with
the name pe_name. After changing attributes, saving the modifications and closing
the editor, the object is modified accordingly.

•

qconf -Mp filename
Modifies a parallel environment object from file.

•

qconf -sp pe_name
Shows the current specification of the parallel environment with the name pe_name.

•

qconf spl
Shows the list of names of available parallel environments.

•

3.8.1.2 Configuration Parameters of Parallel Environments

Each parallel environment object supports the following set of configuration attributes:

Parallel environment configuration attributes

Attribute Value specification

pe_name

119

The name of the parallel environment to be used when attaching it
to queues or when administering its definition. This name has be
be specified by users that explicitly request a certain type of
parallelism for jobs.

slots
The number of parallel processes allowed to run in total under the
parallel environment concurrently.

user_lists

A comma-separated list of user access names. Each user
contained in at least one of the enlisted access lists has access to
the parallel environment as long as it is not also explicitly excluded
via the xuser_lists parameter described below.

xuser_lists

The xuser_lists parameter contains a comma-separated list of
user access lists. Each user contained in at least one of the
enlisted access lists is not allowed to access the parallel
environment. If the xuser_lists parameter is set to NONE (the
default) any user has access. If a user is contained both in an
access list enlisted in xuser_lists and user_lists the user is
denied access to the parallel environment.

start_proc_args This parameter defines the command line of a start-up procedure
for the parallel environment. The keyword NONE can be used to
disable the execution of a start-up script. If specified start-up
procedure is invoked on the execution machine of the job before
executing the job script. Its purpose is it to set up the parallel
environment corresponding to its needs. The syntax for the
parameter value is:
[username@]path [arg ...]
The optional username prefix specifies the user under which this
procedure is started. The standard output of the start-up
procedure is redirected to the file NAME.poJID in the job's
working directory, with NAME being the name of the job and JID
which is the job's identification number. Likewise, the standard
error output is redirected to NAME.peJID. The following special
variables expanded at runtime can be used besides any other
strings which have to be interpreted by the start and stop
procedures to constitute a command line:

$pe_hostfile
The pathname of a file containing a detailed description of
the layout of the parallel environment to be set up by the
start-up procedure. Each line of the file refers to a host on
which parallel processes are to be run. The first entry of
each line denotes the hostname, the second entry is the
number of parallel processes to be run on the host, the
third entry is the name of the queue, and the fourth entry is
a processor range to be used when operating with a
multiprocessor machine.
$host
The name of the host on which the startup or stop

120

procedures are started.
$job_owner
The user name of the job owner.
$job_id
Univa Grid Engine's unique job identification number.
$job_name
The name of the job.
$pe
The name of the parallel environment in use.
$pe_slots
Number of slots granted for the job.
$processors
The processor's string as contained in the queue
configuration of the primary queue were the parallel job is
started (master queue).
$queue
The cluster queue of the queue instance were the parallel
job is started.

stop_proc_args

The invocation command line of a shutdown procedure for the
parallel environment. Similar to start_proc_args this method is
executed on the execution host. The keyword NONE can be used
to disable the execution of a shutdown procedure. If specified this
procedure is used after the job script has finished. Its purpose is it
to stop the parallel environment and to remove it from all
participating systems. Syntax, output files and special variables
that can be specified are the same as for start_proc_args.

allocation_rule The allocation rule is interpreted by the scheduler of the Univa
Grid Engine system. This parameter helps the scheduler decide
how to distribute parallel processes among the available
machines. If, for instance, a parallel environment is built for shared
memory applications only, all parallel processes must be assigned
to a single machine regardless of how many suitable machines
are available. If, however, the parallel environment follows the
distributed memory paradigm, an even distribution of processes
among machines may be favorable. The current version of the
scheduler understands the following allocation rules:

$fill_up
Starting from the best suitable host/queue, all available
slots are allocated. Further hosts and queues are filled as
long as a job requires slots for parallel tasks.
$round_robin
From all suitable hosts a single slot is allocated until all
tasks requested by the parallel job are dispatched. If more
tasks are requested than suitable hosts are found,
allocation starts again from the first host. The allocation
scheme walks through suitable hosts in a best-suited-first
order.

121

Positive number or $pe_slots
An integer number fixing the number of processes per
host. If the number is 1, all processes have to reside on
different hosts. If the special denominator $pe_slots is
used, the full range of processes as specified with the
qsub -pe has to be allocated on a single host no matter
which value belonging to the range is finally chosen for the
job to be allocated.

control_slaves

This parameter can be set to TRUE or FALSE. It indicates whether
Univa Grid Engine is the creator of the slave tasks of a parallel
application on the execution host and thus has full control over all
processes in a parallel application, which enables capabilities
such as resource limitation and correct accounting. However, to
gain control over the slave tasks of a parallel application, a
sophisticated parallel environment interface is required, which
works closely together with Univa Grid Engine facilities. FALSE is
the default for this parameter.

job_is_first_task

The job_is_first_task parameter can be set to TRUE or
FALSE. A value of TRUE indicates that the Univa Grid Engine job
script will also start one of the tasks of the parallel application,
while a value of FALSE indicates that the job script and its child
processes are not part of the parallel program. In this case the the
number of slots reserved for the job is the number of slots
requested with the -pe switch of the submit application plus one
additional slot).

urgency_slots

For pending jobs with a slot range parallel environment request
the number of slots is not determined. This setting specifies the
method to be used by Univa Grid Engine to assess the number of
slots such jobs might finally get. The following methods are
supported:

Positive number
The specified number is directly used as prospective slot
amount.
min
The slot range minimum is used as the prospective slot
amount. If no lower bound is specified, range 1 is
assumed.
max
The value of the slot range maximum is used as the
prospective slot amount. If no upper bound is specified
with the range, the absolute maximum possible for the
PE's slot setting is assumed.
avg
The average of all numbers occurring within the job's
parallel range request is assumed.

accounting_summary

122

This parameter is only checked if control_slaves is set to
TRUE. In this case accounting information is available for every
single slave task of a parallel job. These parameters can be set to
TRUE so that only a single accounting record will be written to the
accounting file.

Note that the functionality of the start-up, shutdown procedures is the full responsibility of the
administrator configuring the parallel environment. Univa Grid Engine will invoke these
procedures and evaluate their exit status. If the procedures do not perform their tasks
properly or if the parallel environment or the parallel application behave unexpectedly, Univa
Grid Engine has no means of detecting this.

3.8.1.3 Setup Parallel Environment for PVM Jobs

A central part of the parallel environment integration with Univa Grid Engine is the correct
setup of the startup and shutdown procedures. The Univa Grid Engine distribution contains
various script and C program examples that can be used as the starting point for a PVM or
MPI integration. These examples are located in the directories $SGE_ROOT/pvm and
$SGE_ROOT/mpi.

Let's have a more detailed look at the startup procedure of the PVM integration. The script is
$SGE_ROOT/pvm/startpvm.sh. This script requires three command line arguments:

The first is the path of a file generated by Univa Grid Engine. The content of that file is
needed by PVM.

•

The second parameter is the hostname of an execution host where the
startpvm.sh script is started.

•

The last parameter is the path of the PVM root directory.•

The host file that is created by Univa Grid Engine contains a description of all resources that
have been assigned to the parallel job that is in the process of being started. This file has the
following format:

The first entry in each line is a execution host name.•
The second entry defines the number of slots to be available on the host.•
The third entry defines the queue that controls the corresponding available slots.•
The last parameter entry specifies a processor range to be used in case of a
multiprocessor machines.

•

PVM also needs a host file but the file format is slightly different from the default file format
generated by Univa Grid Engine. Therefore the startpvm.sh script uses the content of the
default file to generate one that is PVM specific. After doing this, the script starts the PVM
parallel environment. In case this PVM setup has any errors, the startpvm.sh script will
return with an exit status not equal to zero. Univa Grid Engine will not start the job script in
this case and instead indicate an error. If successful, the job script will be started that is now
able to use the prepared parallel environment.

A parallel job that has been set up correctly and either finishes or is terminated due a
termination request will use the termination method set up in the parallel environment. For the
PVM example above, this would mean that the stoppvm.sh script is triggered. This script is

123

responsible for halting the parallel environment and terminating processing of the parallel job.

3.8.1.4 Submitting Parallel Jobs

To run parallel jobs under the control of a certain parallel environment this parallel
environment has to be associated with one or multiple queues. Parallel jobs have to request
the parallel environment in order to use the needed resources. The queue were the job script
of a parallel job is executed is the so called master queue whereas all other queues that
provide compute resources for a parallel job are slave queues.

When job_is_first_task is set to FALSE then the master queue is only used to setup
the parallel job. In most cases it will not extensively use the undelaying compute resources of
the host where the master queue is located. In such setups it might make sense to select a
master queue manually with the -masterq switch of the qsub command to avoid that the
job script of the parallel job is started on resources that should be consumed by compute
intensive slave tasks of the parallel job.

Submit parameters influencing parallel jobs

Attribute Value specification

-pe

qsub, qsh, qrsh, qlogin or qalter switch is followed by a parallel
environment specification of the following format:
pe_name pe_min[-[pe_max]],[-]pe_max
where pe_name specifies the parallel environment to instantiate and pe_min
and pe_max specify the minimum or maximum number of slots that might be
used by the parallel application.

-masterq

This parameter is available for qsub, qsh, qrsh and qalter in combination
with parallel jobs. It defines or redefines a list of cluster queues, queue
domains and queue instances which may be used to become the master
queue of the parallel job. The master queue is defined as the queue where the
parallel job is started. The other queues to which the parallel job spawns tasks
are called slave queues. A parallel job has only one master queue.

-v and -V

These parameters are available for qsub, qsh, qrsh, qlogin and qalter.
They define or redefine the environment variables to be exported to the
execution environment of the job. The same set of variables is also available in
the start-up and stop scripts configured in parallel environments.

The following command submits a parallel job:

 qsub -pe mpi 32-128 \
 -masterq big.q \
 -v SHARED_MEM=TRUE,MODEL_SIZE=HUGE \
 pe_job.sh huge.data

Depending on the definition of the mpi parallel environment, the job will use a
minimum of 32 slots but a maximum of 128 slots.

•

The master queue will be biq.q•
Two environment variables are passed with the job. They will be available in the
execution context of the job but also in the start-up and stop scripts configured in the

•

124

mpi parallel environment
The job name is pe_job.sh with one parameter huge.data•

3.8.2 Setting Up Support for Interactive Workloads

To run interactive jobs immediately (see also User_Guide#Interactive_Jobs) the executing
queue needs to have interactive as queue-type.

Set or change queue-type:

qconf -mq <queue_name>

INTERACTIVE needs to be added to the qtype-line.

Check if qtype is INTERACTIVE:

qstat -f
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 IP 0/0/10 0.01 lx-amd64

test.q@host1 BIPC 0/0/10 0.01 lx-x86

qtype has to have "I" included.

3.8.3 Setting Up Support for Checkpointing Workloads

Checkpointing is a mechanism that allows a "freeze" of a running application so that it can be
restored at a later point in time. This is especially useful for applications that take a long time
to complete and when it would be a waste of computer resources to start it from the point at
which the application was interrupted (e.g. system crash due to hardware error).

In principle it is possible to distinguish between user level checkpointing and kernel level
checkpointing. Kernel level checkpointing must be supported by the underlying operating
system where the application is running. If this is the case then applications can be
checkpointed without additional effort to rebuild the application. In contrast, user level
checkpointing requires some tasks from the author of the application so that it supports
checkpointing. The application has to be designed so that the calculation algorithm is able to
trigger checkpointing regularly or so that it can be triggered outside the application. Some
hardware vendors support this task by providing checkpointing libraries that can be linked
against the application code.

Univa Grid Engine does not provide checkpointing for jobs but it does provide the
environment in which to integrate jobs already supporting certain levels of checkpointing. The
necessary object within Univa Grid Engine is called the checkpointing environment.

3.8.3.1 Commands to Configure Checkpointing Environments

This checkpointing environment can be set up using the following commands:

125

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

qconf -ackpt ckpt_name
This is the command to add a new checkpointing environment. It opens an editor,
shows the default parameters for a checkpointing environment. After changing, saving
necessary values and closing the editor an new environment is created.

•

qconf -Ackpt filename
Adda a new checkpointing environment whose specification is stored in the specified
file.

•

qconf -dckpt ckpt_name
Deletes the checkpointing environment with the given name.

•

qconf -mckpt ckpt_name
Opens an editor and shows the current specification of the checkpointing environment
with the name ckpt_name. After changing attributes, saving the modifications and
closing the editor the object is modified accordingly.

•

qconf -Mckpt filename
Modifies a checkpointing environment from file.

•

qconf -sckpt ckpt_name
Shows the current specification of the checkpointing environment with the name
ckpt_name.

•

qconf sckptl
Shows the list of names of available checkpointing environments.

•

3.8.3.2 Configuration Parameters for Checkpointing Environments

Each checkpointing environment supports the following set of configuration attributes:

Checkpointing environment configuration attributes

Attribute Value specification

ckpt_name

The name of the checkpointing environment to be used when
attaching it to queues or when administering its definition. This name
has to be specified by users that explicitly requests a certain type of
checkpointing for jobs.

interface The type of checkpointing to be used. Currently, the following values
are supported:

hibernator
The Hibernator kernel level checkpointing is interfaced.
cpr
The SGI kernel level checkpointing is used.
cray-ckpt
The Cray kernel level checkpointing is assumed.
transparent
Univa Grid Engine assumes that jobs that are submitted with
reference to this checkpointing environment use a public
domain checkpointing environment such as Condor.
userdefined
Jobs submitted with reference to this type of checkpointing
interface perform their private checkpointing method.

126

application-level
In this case all interface commands specified with this object
will be used. One exception is the restart_command. Instead of
that command the job script itself is restarted.

ckpt_command
A command line type command string to be executed by Univa Grid
Engine in order to initiate a checkpoint.

migr_command
A command line type command string to be executed by Univa Grid
Engine during a migration of a checkpointing job from one host to
another.

restart_command
A command line type command string to be executed by Univa Grid
Engine when restarting a previously checkpointed job.

clean_command
A command line type command string to be executed by Univa Grid
Engine in order to cleanup after a checkpointing application has
finished.

ckpt_dir
A file system location to which checkpoints of potentially considerable
size should be stored.

ckpt_signal

A Unix signal to be sent to a job by Univa Grid Engine to initiate a
checkpointing generation. The value for this field can either be a
symbolic name from the list produced </code>kill -l</code> command
or an integer number which must be a valid signal on the system used
for checkpointing.

when

Defines the points in time when checkpoints are expected to be
generated. Valid values for this parameter are composed by the letters
s, m, x and r and any combination thereof without any separating
character in between. The same letters are allowed for the qsub -c
command which will overwrite the definitions in the checkpointing
environment used. The meaning of the letters is defined as follows:

s
A job is checkpointed, aborted and if possible, migrated if the
corresponding sge_execd is shut down where the job is
executed.
m
Checkpoints are generated periodically at the
min_cpu_interval defined by the queue in which a job is
running.
x
A job is checkpointed, aborted and if possible migrated as soon
as the job gets suspended (manually as well as automatically).
r
A job will be rescheduled (not checkpointed) when the host on
which the job currently runs goes into an unknown state.

The Univa Grid Engine distribution contains a set of commands that might be used for the
parameters ckpt_command, migr_command or restart_command. These commands are
located in the directory $SGE_ROOT/ckpt.

127

3.8.4 Enabling Reservations

To prevent job starvation, the Univa Grid Engine system has three capabilities: resource
reservation, backfilling and advance reservation.

A resource reservation is a job-specific reservation created by the scheduler component for a
pending job. During the reservation the resources for jobs of lower priority are blocked so that
"job starvation" does not occur.

Advanced reservation is a resource reservation completely independent of a particular job
that can be requested by a user or administrator and is created by the Univa Grid Engine
system. That advanced reservation causes the requested resources to be blocked for other
jobs that are submitted later on.

Backfilling is the process of starting jobs of the priority list despite pending jobs of higher
priority that might own a future reservation with the same requested resources. Backfilling
has only a meaning in the context of resource reservation and advanced reservation.

3.8.4.1 Reservation and Backfilling

Resource reservation can be used to guarantee resources dedicated to jobs in job priority
order. A good example to explain the problem solved with resource reservation and
backfilling is the "large parallel job starvation problem". In this scenario there is one pending
job of high priority (possibly parallel) named A that requires a large quota of a particular
resource in addition to a stream of smaller jobs of lower priority B(i) and C(i) requiring a
smaller quota of the same resource.

The cluster where the jobs are waiting to be scheduled is already full with running B(i) jobs.

Without resource reservation an assignment for A cannot be guaranteed assume the steam
of B(i) and C(i) jobs does not stop - even if job A actually has higher priority than the B(i)
and C(i) jobs. Without reservation the scheduler sees only the green area in the resource
diagram that is to small for job A. The red area (future) is out of the scope of the scheduler.
Scheduler without reservation will schedule all lower priority jobs leading to job starvation.

128

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

With resource reservation the scheduler's resource planning will be done for the future. Job A
receives a reservation that blocks lower priority B(i) jobs and thus guarantees resources will
be available for A as soon as possible.

Backfilling allows for the utilization of resources blocked due to a reservation by jobs (and
also advance reservations). Backfilling can take place only if there is an executable job with a
prospective runtime small enough (like C(0) and C(1)) to allow the blocked resource be
used without endangering the reservation of a job with higher priority. The benefit of
backfilling is that of improved resource utilization.

Since resource scheduling requires Univa Grid Engine to look ahead, it is more
performance-consuming in reservation mode than in non-reservation mode. In smaller
clusters the additional effort is certainly negligible as long as there are only a few pending
jobs. With a growing cluster size however and in particular with a growing number of pending
jobs, the additional effort makes sense. The key with tuning resource reservations is to
determine the overall number that is made during a scheduler interval.

To accomplish this some commandline switches and scheduling parameters are available:

Commandline parameter that influence reservation

Parameter Description

-R This submit option is available for qsub, qrsh, qsh, qlogin and qalter.
This option allows the restriction of resource reservation scheduling only to

129

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

those jobs that are critical. In the example above there is no need to schedule
B(i) job reservations for the sake of guaranteeing the job A resource
assignment. The only job that needs to be submitted with the -R y is job A.
This means all B(i) jobs can be submitted with the -R n. without actually
endangering the reservation for A. Default is -R n if none other is specified.

-now
Although it might be requested, reservation is never done for immediate jobs
using -now yes option.

Parameters in scheduler configuration that influence reservation

Parameter Description

max_reservations

For limiting the absolute number of reservations made during a
scheduling interval, the max_reservations parameter in the
scheduler configuration can be used by Univa Grid Engine
administrators. E.g. when max_reservations is set to 20 then no
more than 20 reservations are made within a scheduling interval and
as a result the additional effort for reservation scheduling is limited.

MONITOR

If MONITOR is added to the params parameter in the scheduler
configuration then the scheduler records information for each
scheduling run allowing for the reproduction of job resource
utilization in the file $SGE_ROOT/$SGE_CELL/common/schedule.

DURATION_OFFSET

If DURATION_OFFSET is set then this overrides the default of 60
seconds that is assumed as offset by the Univa Grid Engine
scheduler when planning resource utilization as delta between net
job runtimes and gross time until resources are available. A job's net
runtime as specified with -l h_rt=... or -l s_rt=... or
default_duration always differs from job's gross runtime due to
delays before and after job start time. Amongst these delays before
job start is the time until the end of a schedule_interval, the
time it takes to deliver a job to sge_execd, the time prolog and
starter_method in queue configuration need and the
start_proc_args in parallel environments may be affected. The
delays after a job's actual run include delays due to a forced job
termination (notify, terminate_method or various
checkpointing methods), procedure runs after actual job completion
such as stop_proc_args in parallel configurations or epilog in
queues and the delay until a new schedule_interval. If the
offset is too low, resource reservations can be delayed repeatedly.

3.8.4.2 Advance Reservation

Advance reservations can be compared to the ticket reservation system of a cinema. If a
group of people intends to see a specific movie then someone can reserve a defined number
of tickets. If the tickets are reserved then people can meet when the movie begins. A seat is
available to them during the movie but they must leave when the movie ends so that the
theater is available again for the next showing.

An advance reservation is defined as a reservation of resources done by the scheduler due
to a user or administrator request. This reservation is made at the beginning independent

130

from a particular job. After it is created, multiple users may submit jobs to advance
reservations to use the reserved resources.

Advance reservations have the following characteristics:

defined start time•
defined duration•
defined set of resources•

The absence of one of these characteristics makes it impossible for the Univa Grid Engine
scheduler to find the necessary resources so that the advance reservation can be scheduled.

An advance reservation has the following states:

States of an advance reservation

State Description

r Running. Start time has been reached.

d Deleted. The AR was manually deleted.

x Exited. The end time has been reached.

E Error. The AR became invalid after the start time has been reached

w Waiting. The AR was scheduled but start time has not been reached

W
Warning. The AR became invalid because resources that where reserved are not
available in the cluster anymore.

The following commands address advance reservations or influence them:

qrsub
Used to submit a new advance reservation. Returns the identifier {ar_id} that is
needed as parameter for other commands

•

qrdel {ar_id}
Deletes the advance reservation with ID {ar_id}.

•

qrstat
Command to view the status of advance reservations.

•

qconf -au {username} arusers
Adds a user with name {username} to the access list that allows it to
add/change/delete advance reservation objects.

•

qsub -ar {arid}
Submits a job into a specific advance reservation with the ID {ar_id}.

•

131

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

If an AR is submitted with qrsub, then the start or end time with the duration of the job must
be specified. Other parameters are similar to those of the qsub command. Note that only
users who are in the arusers access list have the right to submit advance reservations.

qrsub command line switches

State Description

-a {date_time}

Defines the activation (start) date and time of the advance
reservation. The switch is not mandatory. If omitted, the current
date and time is assumed. Either a duration or end date and time
must also be specified. Format of -a {date_time} is:
[[CC]YY]MMDDhhmm[.ss] where CC denotes the century, YY the
year, MM the month, DD the day, hh the hour, mm the minutes and
ss the seconds when the job could be started.

-A
{account_string}

Identifies the account to which the resource reservation of the AR
should be charged.

-ckpt {ckpt_name}
Selects the checkpointing environment the AR jobs may request.
Using this option guarantees that only queues providing this
checkpointing environment will be reserved.

-d {time}
Defines the duration of the advance reservation. The use of this
switch is optional if an end date and time is specified with -e

-e {date_time}
Defines the end date and time of the advance reservation. The use
of this switch is optional if -d is requested. Format of
{date_time} is the same as for -a.

-he {y_or_n}

Specifies the behavior when the AR goes into an error state. This
will happen when a reserved host goes into an unknown state, a
queue error happens, or when a queue is disabled or suspended.
A hard error means that as long as the AR is in error state jobs
requiring the AR will not be scheduled. If a soft error is specified
(with <code>-he y) then the AR stays usable with the remaining
resources. By default, soft error handling is used.

-l {requests}
The created AR will provide the given resources specified in
{requests}. Format of {requests} is the same as for qsub
-l.

-m {occasion}

Defines under which circumstances mail is sent to the AR owner or
to the users defined myth -M option. {occasion} can be a letter
combination of the letters b, e and a or the letter n where b is a
beginning mail, e an end mail, a a mail when the AR goes into
error state and n will disable sending of any mail. By default, no
mail will be sent.

-now {y_or_n}
This option impacts the queue selection for reservation. With y,
only queues with the type INTERACTIVE assigned will be
considered for reservation and n is default.

-N {name} The name of the advance reservation.

132

-pe {pe_name}
{pe_range}

Selects the parallel environment the AR jobs may request, Using
this option guarantees the queues providing this parallel
environment will be reserved.

-w {level}

Specifies the validation level applied to the AR request. v does not
summit the AR but prints an validation report whereas e means
that an AR should be rejected if requirements cannot be fulfilled. e
is the default.

3.8.5 Simplifying Job Submission Through the Use of Default Requests

Default requests are job requests that are normally specified at time of submission in the form
of command line switches and arguments to applications like qsub, qsh or qrsh.

These requests are:

resource requests of resources that are needed to execute a job successfully (e.g.
-l, -pe)

•

descriptions of execution environments to define the context in which jobs are
executed (e.g. -S, -shell, -notify)

•

certain hints for the scheduler to help identify resources that might be used for
execution (e.g. -q, -pe, -cal, -ckpt)

•

parameters that define the importance of a job compared to other jobs (e.g -p, -js)•
identifiers that might be used later on for accounting (e.g. -N, -A) ...•

In case of absence of these parameters, additional work is required for the administrator or
for the user who discovers that jobs were not started at all or started using resources that are
not suitable for the job.

Within Univa Grid Engine it is possible to define default requests to solve that problem. These
default requests are used as job requests in the absence of a corresponding request in the
submits command line specification.

Locations to set up such default requests are:

the default request file located in $SGE_ROOT/$SGE_CELL/common1.
the user default request file .sge_request located in $HOME of the submit user2.
the user default request file .sge_request located in the current working directory
where the submit client application is executed.

3.

If these files are available then they will be used for every job that is submitted. They are
processed in the order mentioned above. After that, the submit options embedded in the job
script will be handled as the last switches and parameters that were passed with the
command line of the submit application. When during this processing the -clear option is
detected, any previous settings are discarded.

The file format of default request files is as follows:

Blank lines and lines beginning with a hash character (#) are skipped.•

133

Any other line has to contain one or more summit requests. The requests have the
same name and format as they are used with the qsub command.

•

The following is a example of a default request definition file:

 # Default Requests File

 # request a host of architecture sol-sparc64 and a CPU-time of 5hr
 -l arch=sol-sparc64,s_cpu=5:0:0

 # job is not restarted in case of a system crash
 -r n

Having defined a default request definition file like this and submitting a job as follows:

 qsub test.sh

would have precisely the same effect as if the job is submitted with:

 qsub -l arch=sol-sparc64,s_cpu=5:0:0 -r n test.sh

3.8.6 Job Submission Verifiers

Job Submission Verifiers (JSVs) are UNIX processes that communicate with Univa Grid
Engine components to verify jobs before entering the Univa Grid Engine system. These JSV
processes can then decide if Univa Grid Engine should accept a job, modify the job before it
is accepted or completely reject a job. Accepted jobs will be put into the list of pending jobs.

The Univa Grid Engine admin user might define JSVs to:

ensure the accuracy of submitted jobs.•
verify additional things that might be needed during job execution which are out of the
scope of Univa Grid Engine like certain access rights to hardware or software.

•

inform the user of details of job submission, estimated execution times, cluster
policies, ...

•

integrate additional software components•

Also users submitting jobs can setup JSVs to:

set up job templates for those jobs that are submitted often.•
ensure that certain environment variables are passed with jobs so that they can be
executed successfully.

•

3.8.6.1 Using JSVs for Ensuring Correctness of Job Submissions

Univa Grid Engine knows two different JSV types that are named Client JSV and Server JSV.
Client and Server JSVs have slightly different characteristics:

Client/Server JSV Characteristics

134

Client JSV Server JSV

Can be defined by users that submit jobs and/or
administrators.

Only administrators can define server
JSVs.

Always executed on the submit host where the user
tries to submit a job.

Server JSV instances are executed on
the machine where the sge_qmaster
process is running.

Are executed under the submit user account with
the environment of the submit user

Either executed as admin user or
under an account specified by the
administrator.

Client JSVs communicate with the submit client and
therefore have the ability to send messages to the
stout stream of the corresponding submit client.
This is helpful when administrators want to notify
submit users about certain conditions.

Server JSVs exchange information with
qmaster internal threads. Logging can
be done to the message file of
sge_qmaster process.

They are terminated after one job verification.
Live as long as sge_qmaster process
is alive and JSV script does not
change.

Has no direct impact on the cluster throughput

Have to be written carefully. Due to the
fact that these JSVs directly
communicate with qmaster these JSV
type may decrease submission rate
and cluster throughput.

3.8.6.1.1 Locations to Enable JSV

To enable the JSV infrastructure, the submit or admin user of a Univa Grid Engine system
has to prepare one or multiple script or binary applications. The path to that JSV must be
configured within Univa Grid Engine so that the corresponding application will be triggered
when a new job tries to enter the system. In principle it is possible to specify the -jsv
parameter with various submit clients and the jsv_url parameter can be defined within the
cluster configuration. This allows the specification of JSV's at the following locations:

-jsv used as command line parameter with the submit client1.
-jsv used in the .sge_request file located in the current working directory where
the submit client is executed

2.

-jsv used in the .sge_request file located in $HOME of the user that tries to submit
a job

3.

-jsv used in the global sge_request file in
$SGE_ROOT/$SGE_CELL/default/common

4.

jsv_url defined in the cluster configuration.5.

If a JSV is defined at one of the five locations, then it will be instantiated and used to verify
incoming jobs in a Univa Grid Engine system. JSV 1, 2, 3, and 4 are client JSVs. 5 is a server
JSV. The question of how many JSVs are needed in a cluster and where the best location is
to set up a JSV depends on the tasks to be achieved by the JSV's. JSV 1, 2, 3 and 4 are

135

started as submit user whereas for JSV 5 the administrator can define the user under which
the JSV is executed.

In the extreme case where all configuration locations would be used to set up JSV's, this
would result in up to 5 JSV instances. The instance 1 would get the specification of a job as it
was defined in the submit client. If it would allow the submission of this job or when the job is
accepted with some corrections then the new job specification would be passed to JSV
instance 2. Also this JSV would have the capacity to accept or modify the job. The result of
each JSV verification or modification process would be passed on to the next instance until
JSV 5 either accepts, corrects or rejects the job.

The verification process is aborted as soon as one JSV rejects a job. In this case the submit
user will get a corresponding error message. If the job is accepted or corrected then qmaster
will accept the job and put it into the list of pending jobs elected to be scheduled later on.

3.8.6.1.2 JSV Language Support

JSV processes are started as child processes either from a submit client or the sge_qmaster
process. The stdin/stout/stderr channels of a JSV process are connected to the parent
process via Unix pipes so that processes can exchange informations like job specifications,
environments and verification results. Due to this common setup it is possible to write JSVs in
any principle programming language.

Perl, TCL, Bourne Shell and Jave JSVs are supported out-of-the-box because the Univa Grid
Engine distribution contains modules/libraries that implement the necessary communication
protocol to exchange data between Univa Grid Engine components and JSVs. The
communication protocol is documented so that other language supports may be easily
implemented. Note that due to performance reasons it is recommended to write Server JSVs
in Perl or TCL (Never use Bourne Shell scripts for production systems. Use it only for
evaluation of JSV).

Predefined language modules for the different scripting languages and example JSV scripts
can be found in the directory $SGE_ROOT/dist/util/resources/jsv. These modules
provide functions to perform the following tasks:

To implement the main loop of the script•
To handle the communication protocol to communicate with Univa Grid Engine
components

•

To provide access functions to the job submit parameters•
To provide access functions to the job environment specification•
To define reporting functions•
T define logging infrastructure•

If these predefined modules are used then only two functions have to be written to create a
fully working JSV script.

01
02
03
04

#!/bin/sh

jsv_on_start()
{

136

05
06
07
08
09
10
11
12
13
14
15
16

 return
}

jsv_on_verify()
{
 jsv_accept "Job is accepted"
 return
}

. ${SGE_ROOT}/util/resources/jsv/jsv_include.sh

jsv_main

If this JSV is started, then it will source the predefined Bourne Shell language module
(line 14)

•

With the call of jsv_main() function (line 15) the main loop of the JSV script entered
handles the communication protocol which triggers two callback functions when a job
verification should be started

•

Function jsv_on_start() (line 3) is triggered to initiate a job verification. In this
function certain things can be initialized or information can be requested from the
communication partner. In this example the function simply returns.

•

The function jsv_on_verify() (line 8) is automatically triggered shortly after
jsv_on_start() has returned. The time in between those two calls is used to
exchange job-related information between client/sge_qmaster and the JSV process.

•

In this small example the function jsv_on_verify() only accepts the job without
further verification. This is done with the function jsv_accept() (line 10)

•

Note that in case of client JSV, the JSV process terminates shortly after
jsv_on_verify() is returned and before the submit client terminates. In case of server
JSV, the process remains running since both defined functions will be triggered one
after another for each job requiring verification.

•

3.8.6.1.3 JSV Script Interface Functions

This section lists the provided interface functions that are defined in script language modules
and that can be used within jsv_on_start() and jsv_on_verify() to implement job
verification.

3.8.6.1.3.1 Accessing Job Parameters

The following functions can be used to access job specification within a JSV that was either
defined by the submit environment, the submit client or the switches used in combination with
a submit client to submit a job. The param_name parameter that has to be passed to those
function is a string representing a submit client switch. In most cases the name of
param_name is the same as the switch name used in combination with qsub command.
Sometimes multiple param_name's have to be used to retrieve the information in JSV that
has been defined at commandline using only one switch. The functions also accept some
pseudo-param_name's to find more detailed information about the submit client. A full list of
param_name's can be found in one of the following sections.

jsv_is_param(param_name)
Returns whether specific job parameters are available for the job being verified. Either

•

137

the string true or false will be returned.

jsv_get_param(param_name)
Returns the value of a specific job parameter. This value for a param_name is only
available if jsv_is_param(param_name) returns true. Otherwise an empty string
will be returned.

•

jsv_set_param(param_name, param_value)
This function changes the job parameter param_name to param_value. If
param_value is an empty string then the corresponding job param_name will be
deleted similar to the function jsv_del_param(param_name). As a result the job
parameter is not available since the corresponding command line switch is not
specified during job submission. For boolean parameters that only accept the values
yes and no as well as for the parameters c and m it is not allowed to pass an empty
string as param_value.

•

jsv_del_param(param_name)
Deletes the job parameter param_name from the job specification as if the
corresponding submit switch was not used during submission.

•

Examples

01
02
03
04
05
06
07
08
09
10
11

jsv_on_start()
{
 ...

 if [`jsv_is_param b` = "true" -a `jsv_get_param b` = "y"]; then
 jsv_reject "Binary job is rejected."
 return
 fi

 ...
}

The script above is an excerpt of a jsv_on_start() function (Bourne shell):

The first part of the expression in line 5 tests if the -b switch is used during the job
submission.

•

The second part of the expression tests if the passed parameter is y•
If a binary job is submitted then the corresponding job will be rejected in line 6.•
The error message that will be returned by qsub is passed as parameter to
jsv_reject()

•

01
02
03
04
05
06
07
08
09

if ["`jsv_get_param pe_name`" != ""]; then
 slots=`jsv_get_param pe_min`
 i=`expr $slots % 16`

 if [$i -gt 0]; then
 jsv_reject "Parallel job does not request a multiple of 16 slots"
 return
 fi
fi

The section above might be used in jsv_on_start() function (Bourne shell):

138

In line 1 it is checked if -pe switch was used at command line•
The pe_min value contains the slot specification. If a job was specified e.g with qsub
-pe pe_name 17 then pe_min will have a value of 17.

•

Line 3 calculates the remainder of division.•
Line 5 uses this reminder to se if the specified slots value was a multiple of 16.•
The job is rejected in line 6.•

3.8.6.1.3.2 Accessing List-Based Job Parameters

Some job parameters are lists that can contain multiple variables with an optional value.
Examples for those parameters include job context specifications, resource requests lists and
requested queue lists. To access these parameters as well as its values, the following
functions have to be used:

jsv_sub_is_param(param_name, variable_name)
This function returns true if the job parameter list param_name contains a variable
with the name variable_name or false otherwise. false might also indicate that
the parameter list itself is not available. The function jsv_is_param(param_name)
can be used to check if the parameter list is not available.

•

jsv_sub_get_param(param_name, variable_name)
This function returns the value of variable_name contained in the parameter list
param_name. For list elements that have no value, an empty string will be returned
as well as for the following param_name's: hold_jid, M, masterq, q_hard,
q_soft. For the param_name's l_hard and l_soft the value is optional. The
absence of a value does not indicate that variable_name is not contained in the list.
jsv_is_sub_param(param_name) can be used to check this.

•

jsv_sub_add_param(param_name, variable_name, variable_value)
This function adds a variable_name/variable_value entry into the parameter
list param_name. If variable_name is already contained in that list the
corresponding value will be replaced. variable_value might be an empty string.
For certain param_name's the variable_value must be an empty string. Find the
list above in the section jsv_sub_is_param(param_name, variable_name)

•

jsv_sub_del_param(param_name, variable_name)
Deletes a variable and if available the corresponding value from the list with the name
param_name.

•

Example

01
02
03
04
05
06
07
08

l_hard=`jsv_get_param l_hard`
if ["$l_hard" != ""]; then
 has_soft_lic=`jsv_sub_is_param l_hard soft_lic`

 if ["$has_soft_lic" = "true"]; then
 jsv_sub_add_param l_hard h_vmem 4G
 fi
fi

139

Line 1 returns the value of the -l commandline switch.•
If the value for that parameter is not empty then there is at least one resource request
passed during job submission.

•

Line 3 checks if it contains the soft_lic resource request.•
has_soft_lic will be set to true in this case (line 5).•
If this was specified then h_vmem will be set to 4G (line 6).•

3.8.6.1.3.3 Preparing a Job Verification

This function can be used in jsv_on_start() to request more detailed information for the
job verification process before the verification is started:

jsv_send_env()
This function can only be used in jsv_on_start(). If it is used there then the full
job environment information will be available in jsv_on_verify() for the job that
should be verified next. This means that the functions jsv_is_env(),
jsv_get_env(), jsv_add_env() and jsv_mod_env() can be used within
jsv_on_verify() to access, modify, delete environment-related information if the
job specification that is passed with the -v or -V switches of the different command
line applications. By default, the job environment is not passed to JSVs for
performance reasons. Job environments might become big (10K or more).
Automatically transferring it for each job would slow down the executing components.
Also note that the data in the job environment cannot be verified by Univa Grid Engine
and this might therefore contain data which could be misinterpreted in the script
environment and cause security issues.

•

3.8.6.1.3.4 Logging Status

The following JSV logging functions are available.

jsv_log_info(message)
The passed message string is transferred to the submit client invoking the executing
client JSV or be send to sge_qmaster process in case of server JSV. Submit clients
will then write the message to the stout stream of the submit application whereas in
case of server JSV message is written as info message into the message file of
sge_qmaster.

•

jsv_log_warning(message)
The passed message string will be transferred to the submit client that invoked the
executing client JSV or it will be send to sge_qmaster process in case of server
JSV. Submit clients will then write the message to the stout stream of the submit
application whereas in case of server JSV message is written as warning message
into the message file of sge_qmaster.

•

jsv_log_error(message)
The passed message string will be transferred to the submit client that invoked the
executing client JSV or it will be send to sge_qmaster process in case of server
JSV. Submit clients will then write the message to the stout stream of the submit
application whereas in case of server JSV message is written as error message into
the message file of sge_qmaster.

•

140

Example

01
02
03
04
05
06
07
08
09
10
11
12

l_hard=`jsv_get_param l_hard`
if ["$l_hard" != ""]; then
 context=`jsv_get_param CONTEXT`
 has_h_vmem=`jsv_sub_is_param l_hard h_vmem`

 if ["$has_h_vmem" = "true"]; then
 jsv_sub_del_param l_hard h_vmem
 if ["$context" = "client"]; then
 jsv_log_info "h_vmem as hard resource requirement has been deleted"
 fi
 fi
fi

Line 3 identifies if the JSV is a client or server JSV.•
In case of server JSV (line 8) ...•
... the JSV prints the log message "h_vmem as hard resource requirement
has been deleted". This message will appear on the stdout stream of the submit
client application.

•

3.8.6.1.3.5 Reporting Verification Result

One of the following functions has to be called at the end of the jsv_on_verify() function
after the job verification is done and just before jsv_on_verify() returns.

jsv_accept(message)
A call of this function indicates that the job that is currently being verified should be
accepted as it was initially provided. All job modifications that might have been
applied before this function was called will be ignored. message parameter has to be
a character sequence or an empty string. In the current implementation this string is
ignored and it will appear only if logging for JSV is enabled.

•

jsv_correct(message)
The job that is currently verified when this function is called will be accepted by the
current JSV instance. Modifications that were previously applied to the job will be
committed. The job will be either passed to the next JSV instance if there is one or it
is passed to sge_qmaster so that it can be added to the masters data store when the
function returned. message parameter has to be a character sequence or an empty
string. In the current implementation this string is ignored and it will appear only if
logging for JSV is enabled.

•

jsv_reject(message) or jsv_reject_wait(message)
The currently verified job is is rejected. message parameter has to be a character
sequence or an empty string. message will be passed as error message to the client
application that tried to summit the job. Command line clients like qsub will print this
message to notify the user that the submission has failed.

•

141

3.8.6.1.3.6 Accessing the Job Environment

The following function can be used to access the job environment that will be made available
when the job starts. At the command line this environment is formed with the command line
switches -v and -V. The function can only be used when jsv_send_env() was previously
called in jsv_on_start().

jsv_is_env(env_name)
Returns true when an environment variable with the name env_name exists in the
job currently being verified. In this case jsv_get_env(env_name) can be used to
retrieve the value of that variable.

•

jsv_get_env(env_name)
Returns the value of a variable named env_name. If the variable is not available an
empty string will be returned. To distinguish non-existing variables and empty
variables the function jsv_is_env(env_name) can be used.

•

jsv_add_env(env_name, env_value) and jsv_mod_env(env_name,
env_value)
These functions add or modify a environment variable named env_name. The value
of the variable will be env_value. If jsv_add_env() is used on a variable that
already exists then simply the value is overwritten, when jsv_mod_env() is used on
a variable that does not already exist then it is silently added. env_name might be an
empty string, in this case only the variable is set.

•

jsv_del_env(env_name, env_value)
Removes env_name from the set of environment variables that will be exported to the
job environment when the job is started.

•

3.8.6.1.4 Parameter Names of JSV Job Specifications

JSV functionality allows it to change various aspects of jobs that should be submitted to
Univa Grid Engine systems. This can be done with predefined JSV script interface functions.
Those function require valid parameter names and corresponding values. The table blow
mentions all supported parameter names and describes them in more detail.

JSV Job Parameter Names

Parameter Description

a

If a job has a specific start time and date at which it is eligible for execution
(specified with qsub -a at the commandline) then the corresponding value
is available in JSV as parameter with the name a. The value of this
parameter has the following format: [[CC]YY]MMDDhhmm[.ss] where CC
denotes the century, YY the year, MM the month, DD the day, hh the hour,
mm the minutes and ss the seconds when the job could be started.

ac The value for the ac parameter represents the job context of a job as it is
specified at the command line with the command line switches -ac, -dc
and -sc. The outcome of the evaluation of all three switches will be

142

passed to JSV as the list parameter named ac. It is possible within JSV
scripts to modify this list with the jsv_sub_*_param() functions.

ar

The ar parameter is available in JSV if a advance reservation number was
specified during the submission of a job. At the command line this is done
with the -ar switch. The value of ar can be changed in JSV as long as the
new value is a valid advance reservation id.

b

If the parameter named b is available in JSV this shows that a job was
submitted as binary job e.g with -b switch at the command line. The value
in this case is yes. The absence of this parameter indicates that a
non-binary job was submitted. Independent if the parameter is available or
not it can be set or changed.

c_interval
c_occasion

The command line switch -c of qsub can be used to define the occasions
when a checkpointing job should be checkpointed. If a time interval is
specified then this value will be available in JSV as a parameter with the
name c_interval and when certain occasion are specified through
characters then this letter is available through the parameter c_occasion.
Is is possible to change both values in JSV. Note that a change of
c_occasion will automatically override the current value of c_interval
and vice versa.
Valid values for c_occasion are the letters n, s, m and x where n
disables checkpointing, s triggers a checkpoint when an execution daemon
is shut down, m checkpoint at minimum CPU interval and x checkpoints
when the job gets suspended.
The time value for c_occasion has to be specified in the format
hh:mm:ss where hh denotes hours, mm denotes minutes and ss the
seconds of a time interval between two checkpointing events.

ckpt
The ckpt parameter is set for checkpointing jobs and contains the name of
the checkpointing environment that can be defined at commandline with
the -ckpt switch.

cwd
The value of the cwd parameter is if available the path to the working
directory where the submit client was started. At the command line this will
be set with the -cwd switch.

display

The value of display is used by xterm to contact the X server. At the
command line the value for this parameters can be set in qsh and qrsh
with the -display switch. The format of the display value has always to
start with a hostname (e.g hostname:1). Local display names (e.g. :13)
cannot be used in grid environments. Values set with the display variable
in JSV will overwrite settings from the submission environment and
environment variable values specified with -v command line option.

dl

The dl parameter is available if a deadline time was specified during the
submission of a job. At the command line this can be done with the -dl
switch. If available the value will have the same format as the a parameters
that specifies the start time of a job.

e The e parameter defines or redefines the path used for the standard error
stream of a job. At the command line the value for this parameter can be

143

defined with -e switch.

h
The value of the h parameter indicates that a job was submitted in user
hold state (e.g. with qsub -h). In this case the parameter is available and
it will be set to u. To change this the parameter can be set to n.

hold_jid

The hold_jid parameter contains job dependency information of a job. It
is available when a job was submitted with -hold_jid command line
switch.

If available the list contains references in form of job ids, job names or job
name patterns. Referenced jobs in this list have to be owned by the same
user as the referring job.

hold_jid_ad

The hold_jid_ad parameter defines or redefines array job
interdependencies. It is available when a job was submitted with
-hold_jid_ad command line switch. If available the list contains
references in form of job ids, job names or job name patterns. Referenced
jobs in this list have to be owned by the same user as the referring job.

i
The i parameter defines or redefines the path used for the standard input
stream of a job. At the command line the value for this parameter can be
defined with -i switch.

j

Similar to the -j command line switch the j parameter defines or redefines
if the standard error stream should be merged into the output stream of a
job. In this case the parameter is available and set to y. To change this, the
value can get set to n.

js

Defines or redefines the job share of a job relative to other jobs. If the
corresponding -js parameter was not specified during submission of a job
then the default job share is 0. In this case the parameter is not available in
JSV. Nevertheless it can be changed.

l_hard
l_soft

At the command line job resource requests are specified with the -l
switch. This switch can be used multiple times also in combination with the
switches -hard and -soft to express hard and soft resource
requirements of a job. The sum of all hard and soft requests a job has will
be available in JSV with the two parameters l_hard and l_soft. Note
that if regular expressions or shortcut resource names were used in the
command line then these expressions will also be passed to JSV. They will
not be expanded. It is possible within JSV scripts to modify these resource
list with the jsv_sub_*_param() functions.

m

The value of the m parameter defines or redefines when Univa Grid Engine
sends mail to the job owner. Format is similar to the command line switch
-m of the qsub command. n means that there is no mail sent and different
letter combinations of the letters b, e, a and s can be used to define when
mail is sent where b means that mail is sent at the beginning of a job, e at
the end of a job and a when the job is aborted or rescheduled.

M
M is the list of mail addresses to which the Univa Grid Engine system sends
job related mails. It is possible within JSV scripts to modify these resource
list with the jsv_sub_*_param() functions.

144

masterq

masterq parameter defines candidate queues that might become the
master queue if the submitted job is a parallel job. At the command line this
is specified with the -masterq commandline switch. In JSV the list can be
accessed with the jsv_sub_*_param() script functions.

notify

Jobs where the notify parameter is available in JSV and where it is set
to y will receive a notify signal immediately before a suspend or kill signal
will be delivered. If -notify was not used during submission of a job then
the notify parameter will not be available.

now Not available in JSV.

N The value of N is the job name of the job to be submitted.

o
The o parameter defines or redefines the path used for the standard output
stream of a job. At the command line the value for this parameter can be
defined with -o switch.

p
The p parameter defines or redefines job priority relative to other jobs. It is
only available if the value is not equal 0. Allowed values for this parameter
are integer values in the range between -1023 and 1024.

pe_name
pe_min
pe_max

When parallel jobs are submitted with qsub, the -pe command line switch
has to be specified to define which parallel environment should be used
and also the needed slots can be defined. The parameters pe_name,
pe_min and pe_max show parts of that specification. pe_name is the
name of the parallel environment. pe_min and pe_max specify the biggest
and smallest slot number used in the slot specification. Due to an error in
the JSV module of Univa Grid Engine it is only possible to change the
pe_name with JSV in the moment.

pty

This parameter is only available in Univa Grid Engine 8.0.1 and above (see
UNIVA_EXTENSIONS pseudo parameter below).

The -pty switch of qrsh and qsh enforces the submitted job to be started
in a pseudo terminal. This information will be exported to client and server
JSV scripts with the parameter named pty. If the command line switch is
omitted then then this parameters has the value u which means unset.
Client application and executed job will use the default behavior. y means
that the use of a pseudo terminal is enforced and n that no pseudo terminal
will be used. This parameters can be changed in JSV scripts. This change
will influence the client application and the executed job as if the
corresponding command line switch would have been used directly.

P
Variable that holds the project name to which a job is assigned. A change
of this value will overwrite the value specified with the -P command line
parameter.

q_hard
q_soft

The -q switch at the command application can be combined with the
-hard and -soft switches. As a result the user specifies lists of hard and
soft cluster queue, queue domain and queue instance requests. Within
JSV those lists are available via the parameters q_hard and q_soft.
Both of them can be changed using the jsv_sub_*_param() script
functions.

145

R
If the R parameter is available and set to y when a reservation will be done
for the corresponding job. The request for reservation can be undone by
JSV when the parameter is set to n.

r
r parameter is available and set to y. To overwrite this the value can be
changed to n.

shell
The parameter shell is defined and set to y if a command shell should be
used to start the job. To disable this JSV value has to be changed to n.

sync

This parameter is only available in Univa Grid Engine 8.0.1 and above (see
UNIVA_EXTENSIONS pseudo parameter below).

When a command line application is used with the -sync command-line
switch then within client and server JSV the parameters with the name
sync will be available and it will be set to y. The sync parameter is a
read-only parameter in JSV. This means that it is not possible to influence
the behavior of the command line client by modifying this parameter in
JSV.

S The S parameters specifies the interpreting shell for the job.

t_min
t_max
t_setp

The -t parameter of qsub submits an array job. The task range
specification is available in JSV via three parameters: t_min, t_max and
t_step. All three values can be changed.

terse

This parameter is only available in Univa Grid Engine 8.0.1 and above (see
UNIVA_EXTENSIONS pseudo parameter below). When a command line
application is used with the terse-switch then the parameter named
terse will be available in client and server JSV scripts and it will be set to
y. If this parameters is set to n then the submit client will print the regular
"Your job ..." message instead of the job ID. The parameter value can be
changed within JSV scripts.

v

There is no v parameter in JSV. If information concerning the resulting job
environment is needed in JSV then this has to be requested explicitly.
When using the JSV script interface, this can be done with a call of
jsv_send_env() in jsv_on_start(). After that the jsv_*_env()
functions can be used to access the job environment.

V

This parameter is only available in Univa Grid Engine 8.0.1 and above (see
UNIVA_EXTENSIONS pseudo parameter below).

The V parameter will be available in client and server JSV scripts and it will
have the value y when the -V command line switch was used during the
submission of a job. This indicates that the full set of environment variables
that where set in the submission environment can be accessed from JSV.
If this parameter is not available or when it is set to n then only a subset of
the user environment can be accessed in JSV scripts. Only those
environment variables will be available that were passed with the -v
command line parameter.

wd See cwd
Additionally to the job parameters JSV provides a set of pseudo parameters

146

JSV Pseudo Parameter Names

Parameter Description

CLIENT

The value of the CLIENT is either qmaster in case of server JSV or
for client JSV's the name of the submit client that tries to submit the
job. Valid client names are qsub, qrsh, qsh, qlogin or qmon. In
case of DRMAA clients the string drmaa is used. This value is
read-only. It cannot be changed by JSV.

CMDARG{i}

Command line arguments of the job script will be available within
JSV via multiple CMDARG{i} parameters where {i} is replaced
with by the number of the position where the argument should
appear. {i} is a number in the range starting from 0 to CMDARGS -
1. This means that the first argument will be available through the
parameter CMDARG0.

CMDARGS
The value is a integer number that representing the number of
command line arguments that should be passed to the job when it is
started.

CMDNAME
In case of binary submission the CMDNAME contains the command
name of the binary to be executed, for non-binary jobs the full path
to the job script is specified.

CONTEXT
The CONTEXT might have two values. client or master
depending on which client host the JSV is currently executed. It is
not possible to change this value.

GROUP
The value of GROUP is the primary group name of the user who
submitted the job. Cannot be changed by JSV.

SUBMIT_HOST

This parameter is only available in Univa Grid Engine 8.0.1 and
above (see UNIVA_EXTENSIONS pseudo parameter below).

Within server JSV's the read-only parameter SUBMIT_HOST is
available. This parameter contains the hostname where the submit
application is executed.

JOB_ID

This variable is not available when CONTEXT is client (client JSV).
In case of server JSV the value of JOB_ID is the job number the job
would get when it is accepted by the Univa Grid Engine system.
This value cannot be changed by JSV.

UNIVA_EXTENSIONS

The JSV parameter named UNIVA_EXTENSIONS is available in
Univa Grid Engine 8.0.1 and above. This read-only parameter can
be used in client and server JSV scripts to detect if a certain set of
JSV parameters can be accessed that are only available in the
Univa version of Grid Engine. If this parameter is not available or
when it is set to n then these extensions to JSV are missing (Open
Source version of Grid Engine). In this case it is not possible to
access following parameters: pty, sync, terse, V and
SUBMIT_HOST.

USER

147

The value of USER is the Unix user name of the user who submitted
the job. Cannot be changed by JSV.

VERSION

Shows the VERSION of the implementation of the JSV
communication protocol. VERSION is always available in JSV and it
is not possible to change the value. The format of the value is
{major}.{minor}. Since the first implementation of JSV the
communication protocol has not been changed so that the current
VERSION is still 1.0

3.8.6.2 Using JSVs for Integrating Univa Grid Engine With Other Facilities

Script bases JSVs are the best compromise concerning performance and flexibility to align
jobs according to the needs that predominate a cluster. Other facilities that should be
integrated with Univa Grid Engine might have different requirements. Such facilities might
require that:

a special programming language is used.•
certain tasks should be achieved that cannot be done easily within a script language.•
performance has to be optimized so that cluster throughput can be increased.•

To be able to do so Univa Grid Engine provides information about the communication
protocol that is used between acting components so that administrators are able to write
JSVs in any programming language. Contact us to receive more detailed information.

The JSV protocol has meanwhile been implemented for the Java programming language.
JAR files as well as documentation are part of the distribution. Find it in the directories
$SGE_ROOT/util/resources/jsv, $SGE_ROOT/lib.

The Java implementation has been used for the Hadoop integration which is explained in a
different chapter.

3.8.7 Enabling and Disabling Core Binding

The core binding feature can be enabled and disabled on host level. In a default Univa Grid
Engine installation, it is turned on for Linux hosts, while on Solaris architectures it must be
enabled by the administrator. The reason for this is that the functionality differs on these two
supported architectures. On Linux a bitmask is set for a process, which tells the operating
system scheduler not to schedule the process to specific cores. The net result is a more
streamlined processed. The scheduler does not prevent other processes to be scheduled to
the specific cores (nevertheless it avoids it). On a Solaris processor sets are used. They
require root privileges and exclude other processes (even OS processes) to run. Hence it
would be possible by the user to occupy cores, even when the application is granted just one
slot. In order to avoid this, the administrator must ensure the number of cores are aligned
with the number of granted slots. This can be done with advanced JSV scripts.

To turn this feature on, add ENABLE_BINDING=true to the execd_params on the specific
execution host. The feature is explicitly disabled with ENABLE_BINDING=false.

148

3.8.7.1 Example: Enabling Core Binding on Host host1

> qconf -mconf host1
mailer /bin/mail
...
execd_parameter ENABLE_BINDING=true

3.8.8 The Univa Grid Engine Hadoop Integration

Univa Grid Engine provides an integration with Apache Hadoop. In a nutshell, it enhances
Hadoop with enterprise level accounting and reporting features, provides expanded policy
control for Hadoop and integrates Hadoop into shared resource pools which are used for
Hadoop calculations as well as other workloads.

3.8.8.1 Brief Introduction to Apache Hadoop

Apache Hadoop is an innovative and popular framework for developing and running large
and scalable data analytics applications such as data mining or parameter studies. It is an
open implementation of the map-reduce paradigm and comes with HDFS, the Hadoop
Distributed File System, for high throughput access to distributed data.

There are some well-known problems to Hadoop, however. If Hadoop is being run on
Hadoop-dedicated resources for Hadoop-based applications, there are few problems, if any.
But if the intentions are to share such a resource pool across Hadoop applications as well as
other workloads, then Hadoop behaves badly. It will not recognize that other workloads are
attempting to utilize the same resources and will assume that all resources are under Hadoop
control. This leads to overloaded nodes and a slowdown of applications caused by
congestion.

One can choose to set aside resources specifically for Hadoop at the expense of using
resources optimally; ultimately, is harder to integrate Hadoop applications with other
workloads.

However, even a resource pool used for nothing but Hadoop applications will encounter a
number of issues. Hadoop has limited scheduling features. It supports prioritization and a
fair-share policy but it does not, for instance, allow the control of resource consumption per
user, per group or per project. Hadoop also does not offer true accounting, i.e. it does not
track resource usage over periods of time and it does not track that usage per individual jobs
or the users, user groups and projects. It does not conduct aggregated accounting if the
resource pool is shared across Hadoop and non-Hadoop applications.

3.8.8.2 Benefits of Using Hadoop with Univa Grid Engine

Using Hadoop together with Univa Grid Engine is beneficial if the intention is to utilize the
resource pool not only for Hadoop calculations but also for sharing those resource with other
workloads or to integrate Hadoop applications with non-Hadoop applications. Even if only
using Hadoop-based applications there is still a benefit in using Univa Grid Engine together
with Hadoop via the advanced policy management and accounting features of Univa Grid
Engine. Hadoop also operates while embedded in a private, hybrid or public cloud framework

149

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

created by Univa Grid Engine and UniCloud.

Univa Grid Engine treats Hadoop applications as a 'tightly integrated' parallel job. In doing so,
Grid Engine has full control over all aspects of the Hadoop framework. Hadoop thereby
inherits all the benefits which Univa Grid Engine, as an advanced enterprise-grade resource
management system, provides such as versatile policy control and full accounting and
reporting. It remains in friendly coexistence with other workloads in the Univa Grid Engine
cluster, including other parallel applications, e.g. using MPI, or throughput applications or
even interactive work under Univa Grid Engine control.

3.8.8.3 How Hadoop is Integrated with Univa Grid Engine

Univa Grid Engine keeps track of the layout of HDFS data blocks and HDF data racks
as they are distributed across the nodes in the Hadoop cluster. This is accomplished
by a load sensor. This load sensor will reflect the data layout in HDFS in the
hdfs_primary_rack, hdfs_secondary_rack, and in one or more hdfs_blk*
complexes. See here for more information on load sensors and complexes.

•

Users submit job requests with access to the data needed in the form of an HDFS
absolute path. A Job Submission Verifier (JSV) has been created which will translate
this HDFS absolute path into requests to hdfs_primary_rack,
hdfs_secondary_rack, and hdfs_blk* complexes for each job. This ensures that
only the nodes selected for the job with resident HDFS data blocks are required.

•

A Hadoop Parallel Environment (PE) is available in tight integration with Hadoop,
including the queues in which Hadoop jobs are processed. Users submit Hadoop jobs
to that PE. See here for more information regarding PEs.

•

Once appropriate nodes are available, Hadoop jobs are started in a MapReduce
cluster which is set up on those nodes for the job. This will create a Hadoop
configuration directory under $TMPDIR/conf with properly modified mapred.xml as
well as slaves and master files.

•

The Hadoop PE is configured to start a Hadoop job tracker on the master node of the
parallel Hadoop job and a task tracker on each of the slave nodes. It will, furthermore,
put the URI and the URL of the job tracker into the context of the parallel Hadoop job.
See Using the Job Context for more information on job contexts.

•

Univa Grid Engine will have full control over the processes belonging to the Hadoop
jobs and its tasks. It will collect all accounting data and will be able to complete all
processes in case a job is aborted via a qdel command.

•

Note, however, that the suspend and resume commands are currently not supported by Hadoop. Suspended Hadoop jobs may display erratic behavior.

3.8.8.4 Installing the Hadoop Integration

150

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

3.8.8.4.1 Installation Prerequisites

The following things should be taken into account before the installation of the Hadoop
integration:

Hadoop is installed on all nodes of a Univa Grid Engine cluster. If installing it only on
part of the nodes, then the Hadoop parallel environment is restricted to the respective
nodes only. By default, the Hadoop parallel environment is created to encompass all
nodes of a cluster which must be modified after installation. See here for how to
manipulate parallel environments.

•

An appropriate Java run-time environment must be available (Java SE 6 or higher). If
this not be possible, as in the item above, the Hadoop parallel environment should be
restricted to encompass only those nodes which are compliant to this requirement.

•

The load sensor monitoring the HDF data layout must be run with HDFS super user
privileges. Load sensors must be run in Univa Grid Engine either under the root
account or as admin user. HDFS needs to be installed and configured to allow either
root or the admin user to have HDFS super user access privileges. See the HDFS
Permissions Guide for more information.

•

3.8.8.4.2 Installing the Hadoop Integration Package

The integration package is located in the top level Univa Grid Engine installation
directory and is called hadoop. A copy of this directory should be created and the rest
of the installation steps executed there so follow-up updates of the Univa Grid Engine
software do not automatically overwrite files important for the Hadoop integration
configuration. The copy of the hadoop directory needs to be accessible by all nodes
of the Hadoop cluster being set up for use together with Univa Grid Engine. This is
most easily accomplished if the creation of this copy on a shared file system has with
access for all nodes. The following steps assume this is the case.

1.

Make sure the files in the conf subdirectory are correct and permit access to HDFS.2.
The following files are created for each Hadoop job and thus must be removed at this
point: mapred.xml, slaves and masters.

3.

Now install the Hadoop integration by running ./setup.pl -i. This will carry out
the following steps:

Creation of the hdfs_primary_rack, hdfs_secondary_rack, and
hdfs_blk* complexes.

1.

Creation of the parallel environment called hadoop.2.
Adding the load sensor monitoring the HDFS data layout to the global host.3.

4.

The hadoop parallel environment now needs to be configured to allow Hadoop jobs
to be started on cluster nodes. This is accomplished by adding queues to the parallel
environment configuration of the hadoop PE. See here for more information on how
to setup PEs.

5.

If a network file sharing program is not used, then one copy of the hadoop directory should
be created. Set it up as described above and copy it to all nodes in the Hadoop cluster.
However, the installation script setup.pl only needs to be executed once on an
administration host.

The copy or copies of the hadoop directory as <hadoop_site> are described below.

151

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

3.8.8.4.3 Verifying the Hadoop Integration

Run qhost -F hdfs_primary_rack to check whether the HDFS data layout has
been reported correctly by the load sensor. Due to load reporting intervals and
number of nodes, several minutes may pass before the hdfs_primary_rack
complex is populated for all nodes. If, after waiting for several minutes, there are still
nodes missing to report values for hdfs_primary_rack then check the installation
of that host as described under Hadoop Integration Troubleshooting.

1.

Run a job which translates the hdfs_input absolute HDFS file path into racks and
data blocks to check whether it runs correctly. The translation will be executed by the
JSV script located in the Hadoop configuration directory <hadoop_site>. A suitable
job to tests this would be
qsub -h -jsv <hadoop_site>/jsv.sh -l hdfs_input=<absolute HDFS
path> $SGE_ROOT/examples/jobs/sleeper.sh
Afterwards, check for whether the hdfs_input request has been replaced with
requests for hdfs_primary_rack, hdfs_secondary_rack, and several
hdfs_blk* complexes. Do this by running the qstat -j <job_id> command and
check the output. The job may be deleted when that is done.

2.

Now test whether the hadoop parallel environment is working properly and, in
particular, whether a job tracker for the job has been started and published in its URI
and URL. To do this, submit a very simple but reasonably long-running job to the
hadoop PE, for example:
qsub -pe hadoop 1 $SGE_ROOT/examples/jobs/sleeper.sh 400
Now use qstat -j <job_id> again and search the context section of the output
for the entries

hdfs_jobtracker: The URI of the MapReduce job tracker used for
manipulating this job tracker together with the mapred.xml file.

®

hdfs_jobtracker_admin: The URL of the administrative web interface of
the job tracker. The web browser can be pointed to the URL to display the
administrative web interface for this particular job. In our example, the web
page shows that the number of task trackers for this job is 1.
That job can be deleted with qdel <job_id> again and repeated on the
same test with larger numbers of tasks, e.g. using a -pe hadoop 3 request
in the above job submission example and check whether the number of tasks
tracker is indeed 3.

®

3.

A more serious Hadoop test example for which a little shell script hadoop.sh may be
created is as follows: #!/bin/sh
$HADOOP_HOME/bin/hadoop --config \$TMPDIR/conf fs -lsr
<data_path_in_HDFS>
With <data_path_in_HDFS> being a path in HDFS which exists. Next, submit this
script to Univa Grid Engine via the command:
qsub -pe hadoop 1 hadoop.sh
Wait for completion of the job and check the output file. It should contain the complete
listing of the directory <data_path_in_HDFS>.

4.

Finally a parallel Hadoop example can be run. Again, create a corresponding job
script first, this time called hadoop-grep.sh:
#!/bin/sh
$HADOOP_HOME/bin/hadoop --config \$TMPDIR/conf jar
$HADOOP_HOME/hadoop-*-examples.jar grep <input_path>

5.

152

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

<output_path> <grep_pattern>
Check the Hadoop Quickstart Guide for information on how to use the grep example
and for how to choose values for input_path, <output_path> and
<grep_pattern>.
The job tracker's administrative web interface can be used to monitor the job and the
output generated by the job.

3.8.8.4.4 Troubleshooting the Hadoop Integration

3.8.8.4.4.1 No HDFS Resources Reported on a Node

Symptom: No information displayed when executing qhost -F | grep hdfs•
Possible Reasons:

It may take several minutes until HDFS resource information is reported.1.
Load sensor has no permission to access HDFS information.2.
The env.sh script in the Hadoop configuration directory has an incorrect path
to the Hadoop installation or to the Java platform.

3.

The Hadoop configuration directory contains inconsistent information. Null
pointer exceptions from the Hadoop framework are a common problem in that
case.

4.

•

Solutions:
Wait for a few minutes. If still no HDFS resource information appears then
check for whether the Hadoop load sensor is running on the respective node.
Use the jps -l command and look for com.sun.grid.herd.HerdJsv.
Run this command under the same user under which the load sensor has
been started. This is either root or the Univa Grid Engine admin user. If the
load sensor is not running then ...

1.
•

3.8.8.4.4.2 Job Tracker or Task Tracker not Running

3.9 Ensuring High Availability

For an introduction to the shadow master concept see also SGE_SHADOWD and the
Shadow Master Hosts.

With one Univa Grid Engine installation or multiple instances, sge_shadowd can monitor
sge_qmaster availability and in case of sge_qmaster outages, start a new sge_qmaster on a
shadow host.

The shadow master functionality uses the following algorithm:

during regular operation sge_qmaster writes a heartbeat file in regular intervals
(written every 30 seconds to file <qmaster spool dir>/heartbeat)

•

all sge_shadowd instances monitor the heartbeat file•
if a sge_shadowd detects that the heartbeat file has not changed for a certain time
(see Tuning the sge_shadowd, it tries to take over the qmaster role, according to the
following algorithm:

avoid multiple instances of sge_shadowd takeover (via a lock file)®
check if the old qmaster is still down®

•

153

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

startup sge_qmaster®

3.9.1 Prerequisites

Implementing high availability via sge_shadowd requires a specific setup regarding
sge_qmaster spool directory and spooling method:

all shadow hosts must be administrative hosts•
the sge_qmaster spool directory must be shared amongst the master host and all the
shadow hosts

•

for qmaster spooling, the following options can be used:
classic spooling on a shared file system®
berkeleydb spooling on a shared file system providing locking capabilities, e.g.
NFS4 or Lustre. The master host and all shadow hosts must have the same
architecture (Univa Grid Engine architecture string)

®

•

See also Selecting a File System for Persistency Spooling of Status Data for selecting the
spooling method and file system.

3.9.2 Installation

For the installation of shadow hosts see Shadow master host installation.

3.9.3 Testing sge_shadowd Takeover

After doing the shadow host installation on one or multiple shadow hosts, make sure the
shadowd takeover actually works.

To test shadowd takeover, simulate the outage of the sge_qmaster or of the master host by
either:

unpluggin the network interface of the master host•
suspending or terminating the sge_qmaster process (do not gracefully shutdown
sge_qmaster - in this case, sge_shadowd will not take over)

•

Monitor Univa Grid Engine functionality by calling qstat in regular intervals - qstat will fail until
one of the shadow hosts has taken over control.

When the shadowd mechanism has started up a shadow master, check
$SGE_ROOT/$SGE_CELL/common/act_qmaster - it will contain the name of the new
master host.

Monitor with qhost if all execution hosts start using (register with) the sge_qmaster on the
shadow host.

154

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

3.9.4 Migrating the Master Host Back After a Takeover

It may be necessary to manually migrate sge_qmaster to a different host, e.g.

when some maintenance on the master host is done, migrate sge_qmaster to one of
the shadow hosts

•

after a shadow host takes over, migrate back sge_qmaster to the original master host•

On the target sge_qmaster host as user root call

$SGE_ROOT/$SGE_CELL/common/sgemaster -migrate

This command

shuts down the running sge_qmaster•
starts up a sge_qmaster on the local host.•

3.9.5 Tuning the sge_shadowd

Timing behavior of sge_shadowd can be configured via 3 environment variables:

SGE_CHECK_INTERVAL: Controls the interval in which sge_shadowd checks the
heartbeat file. The default is 60 seconds. sge_qmaster writes the heartbeat file every
30 seconds.

•

SGE_GET_ACTIVE_INTERVAL: When the heartbeat file has not changed this
number of seconds, sge_shadowd will try to take over. Default is 240 seconds.

•

SGE_DELAY_TIME: If a sge_shadowd tried to take over, but detected that another
sge_shadowd already started the take over procedure, it will wait for
SGE_DELAY_TIME seconds until it takes up checking the heartbeat file again.
Default is 600 seconds.

•

See also the man page sge_shadowd.8.

Be careful tuning these parameters. Setting the values too small may result in sge_shadow
taking over in situations where the sge_qmaster has short outages, e.g. short network
outages, or delays in propagating the contents of the heartbeat file from the master host to
shadow hosts due to high load on the NFS server.

Recommendation:

Start with the default values. This will result in a shadowd take over to happen within
some 6 minutes.

•

Reducing the SGE_GET_ACTIVE_INTERVAL is safe, e.g. setting it to 10 seconds
can reduce the takeover time by some 50 seconds.

•

Most benefit can come from tuning the SGE_GET_ACTIVE_INTERVAL parameter.
Setting the value too low can result in sge_shadowd trying to take over when short
outages occur, e.g. due to short network or NFS server outages / overload. Setting it
for example to 60, and setting SGE_GET_ACTIVE_INTERVAL to 10 seconds can
result in a shadow host takeover time of some 70 seconds.

•

155

Tuning the SGE_DELAY_TIME should usually not be necessary - it would be used to
reduce the time interval for a second shadow host take over if the first shadow host
fails to take over. Be careful tuning this parameter. It should never be lower than the
time required for starting sge_qmaster in the cluster. Sge_qmaster startup time
depends on cluster size and the number of jobs being registered in the cluster. In a
big cluster with thousands of jobs being registered, the sge_qmaster startup time can
be in the magnitude of minutes.

•

3.9.6 Troubleshooting

3.9.6.1 How do I know which host is currently running sge_qmaster?

The name of the host running sge_qmaster can be found in the
$SGE_ROOT/$SGE_CELL/common/act_qmaster file.

3.9.6.2 Where do I find run time information of running shadow daemons?

Every sge_shadowd writes run time information into its own messages file, which can be
found at <qmaster spool dir>/messages_shadowd_<hostname>. It contains
information about the running sge_shadowd, e.g. its version, as well as monitoring
information and reports about shadow host activity, e.g.

05/02/2011 11:19:16| main|halape|I|starting up UGE 8.0.0 beta (lx-x86)
05/02/2011 11:40:18| main|halape|E|commlib error: got select error (No route to host)
05/02/2011 11:40:18| main|halape|W|starting program: /scratch/joga/clusters/shadow/bin/lx-x86/sge_qmaster

3.9.6.3 Startup of sge_qmaster on a shadow host failed. Where do I find information
for analyzing the problem?

The file <qmaster spool dir>/messages_qmaster.<hostname> contains the time
when sge_shadowd on <hostname> started a sge_qmaster, as well as sge_qmaster output
to stdout and stderr at startup time.

3.10 Utilizing Calendar Schedules

Calendar objects within Univa Grid Engine are used to define time periods where certain
cluster resources are disabled, enabled, suspended or unsuspended. Time periods can be be
defined on a time of day, day of week or day of year basis.

Defined calendar objects can be attached to cluster queues or parts of cluster queues so that
it automatically changes its state on behalf of that attached calendar.

Users submitting jobs can request queues with a certain calendar attached.

3.10.1 Commands to Configure Calendars

To configure a calendar, the qconf command can be used which provides a number of
calendar related options:

156

qconf -acl calendar_name
The 'add calendar' options adds a new calendar configuration named calendar_name
to the cluster. When this command is triggered, an editor with a template calendar
configuration will appear.

•

qconf -Acl filename
This command adds a calendar specified in filename to the Univa Grid Engine
system.

•

qconf -dcal calendar_name [,É]
The 'delete calendar' option deletes the specified calendars.

•

qconf -mcal calendar_name
The 'modify calendar' option shows an editor with an existing calendar configuration of
the calendar named calendar_name.

•

qconf -scal calendar_name
The 'show calendar' option displays the configuration of the calendar calendar_name.

•

qconf -sscal
The 'show calendar' list options shows all configured calendars of a Univa Grid
Engine system

•

3.10.2 Calendars Configuration Attributes

A calendar configuration allows the following configuration attributes:

Calendar configuration attributes

Attribute Value specification

calendar_name
The name of the calendar to be used when attaching it to queues or
when administering the calendar definition.

year The status definition on a day of the year basis. This field generally will
specify the days on which a queue, to which the calendar is attached, will
change according to a set state. The syntax of the year filed is defines as
follows:

NONE
| year_day_range_list = daytime_range_list [= state]
| year_day_range_list [= daytime_range_list] = state
| state

NONE means no definition is made on the year basis.•
If a definition is made on a yearly basis, at least one of the
year_day_range_list, daytime_range_list and state
have to be present.

•

switching the queue to 'off' by disabling it assumes the state is
omitted.

•

the queue is enabled for days neither referenced implicitly by
omitting the year_day_range_list nor explicitly.

•

and the syntactical components are defined as follows:

157

year_day_range_list := yearday-yearday | yearday, ...
daytime_range_list :=
hour[:minute][:second]-hour[:minute][:second], ...
state := on | off | suspended
year_day := month_day.month.year
month_day := 1 | 2 | ... | 31
month := jan | feb | ... | dec | 1 | 2 | ... | 12
year := 1970 | 1971 | ... | 2037

week

The status definition on a day of the week basis. This field generally will
specify the days of a week and at the times at which a queue, to which
the calendar is attached, will change to a certain

state. The syntax of the week field is defined as follows:

NONE
| week_day_range_list[=daytime_range_list][=state]
| [week_day_range_list=]daytime_range_list[=state]
| [week_day_range_list=][daytime_range_list=]state} ...

Where

NONE means, no definition is made on the week basis•
if a definition is made on the week basis, at least one of
week_day_range_list, daytime_range_list or state
always have to be present.

•

every day in the week is assumed if week_day_range_list is
omitted.

•

syntax and semantics of daytime_range_list and state are
identical to the definition given for the year field above.

•

the queue is assumed to be enabled for days neither referenced
implicitly by imitating the week_day_range_list nor explicitly

•

and where week_day_range_list is defined as

week_day_range_list := week_day-week_day | week_day, É
week_day := mon | tue | wed | thu | fri | sat | sun

with week_day_range_list the week_day identifiers must be
different.

Note that successive entries to the year or week fields (separated by blanks) are combined in
compliance with the following rules:

off-areas are overridden by overlapping on- and suspend-areas. Suspend-areas are
overridden by on-areas. Hence an entry of the form week 12-18 tue=13-17=on
means that queues referencing the corresponding calendar are disabled the entire
week from 12.00-18.00 with the exception of Tuesday between 13.00-17.00 where the
queues are available.

•

158

area overriding occurs only within a year or week basis. If a year entry exists for a day
then only the year calendar is taken into account and no area overriding is done with
a possible conflicting week area.

•

The second time specification in a daytime_range_list may be before the first
one and treated as expected. An entry like year 12.3.2011=12-11=off causes
the queue(s) to be disabled 12.3.2011 from 00:00:00-10:59:59 and
12:00:00-23:59:59.

•

3.10.3 Examples to Illustrate the use of Calendars

 calendar_name night
 year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999,18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999=on
 week mon-fri=6-20

The calendar configuration above defines a night, weekend and public holiday
calendar

•

On public holidays, night queues are explicitly enabled.•
On working days, queues are disabled between 6.00 and 20.00.•
Saturdays and Sundays are implicitly handled as enabled times.•

 calendar_name day
 year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999,18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999
 week mon-fri=20-6 sat-sun

On public holidays day-queues are disabled.•
On working days such queues are closed during the night between 20.00 and 6.00,
i.e. the queues are closed on Monday from 0.00 to 6.00 and on Friday from 20.00 to
24.00. On Saturdays and Sundays the queues are disabled.

•

 calendar_name night_s
 year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999,18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999=on
 week mon-fri=6-20=suspended

night_s is a night, weekend and public holiday calendar with suspension.•
Essentially the same scenario as the first example in this section but queues are
suspended instead of switched off.

•

 calendar_name weekend_s
 year NONE
 week sat-sun=suspended

Weekend calendar with suspension, ignoring public holidays.•
Settings are only done on the week basis, no settings on the year basis.•

3.11 Setting Up Nodes for Exclusive Use

Administrators can set up Univa Grid Engine in a way so that users can request hosts for
exclusive use independent of how many processors or cores are provided. This is done
independently if the host is used for single core batch jobs, bigger parallel jobs, or something
different.

159

Exclusive host usage might help:

execute jobs independently that would otherwise interfere with each other jobs or with
system resources that can be only used exclusively.

•

set up security terms required for certain jobs•

To enable hosts of a Univa Grid Engine cluster to be used for exclusive use, the administrator
has to:

Add a exclusive boolean consumable to the complex definition that specifies as relop
the EXCL keyword and that is requestable. The qconf -mc command can be used to
do so .

•

 #name shortcut type relop reqeustable consumable default urgency
 exclusive excl BOOL EXCL YES YES 0 1000

Attach the consumable to hosts that should be used exclusively. This is done by using
the qconf -me host_name command. exclusive=true has to be added to the
complex_values of the corresponding host.

•

Users wo want to request a host exclusively have to

specify the consumable during job submission. This is done with -l
exclusive=true parameters with the command line applications

•

 > qsub -l exclusive=true É

3.12 Deviating from a Standard Installation

3.12.1 Utilizing Cells

Univa Grid Engine can be set up so that the resources participating in a single cluster or
multiple individual clusters sharing the same set of files (binaries, libraries, É) contained in
the $SGE_ROOT directory can be set up.

If multiple clusters are set up then these are uniquely identified by the $SGE_CELL
environment variable set during cluster installation which contains a unique cell name that
remains valid until the cluster is uninstalled. Recommended cell name for the first installed
cluster is default.

After installing a Univa Grid Engine cell, the configuration files spools files of that cell. These
can be located in $SGE_ROOT/$SGE_CELL.

Note that at the moment, cells are loosely coupled so that each cell has the full set of
daemons and other components that act independently from the daemons and components
participating in other cells. So there is no automatic means to balance load between those
clusters.

160

3.12.2 Using Path Aliasing

The Univa Grid Engine path aliasing facility provides administrators and users with the means
to reflect in-homogeneous file system structures in distributed environments. One example
for this are home directories that are mounted under different paths on different hosts.

Consider a user home directory that is exported via NFS or SMB. This directory might be
mounted via automounter to /home/username on some Linux hosts and to /Users/username
on host with Mac OS X as operating system. On Solaris host /home/username might be a link
to /tmp_mnt/home/username where the directory was mounted by the automounter.

If a user submits a job using the -cwd switch somewhere within the home directory then the
job needs the current working directory to be executed successfully. If a job's execution host
is one where the home directory is mounted differently then the system will not be able to
locate the directory on the execution environment.

To solve this problem Univa Grid Engine provides the possibility for administrators to define a
global path aliasing file in $SGE_ROOT/$SGE_CELL/commen/sge_aliases. Users can also
define a path aliasing file in the directory $HOME/.sge_aliases.

The Format of the file is as follows:

Empty lines and lines beginning with a hash character (#) will be skipped.•
Other lines must contain four strings separated by space or tab characters•
First string specifies a source path the instant a host is submitted•
Third string defines an execution host and the fourth string a destination path•
Submit hostname and execution hostname might be replaced by an asterisk character
(*) that matched any hostname.

•

If the -cwd flag to qsub is specified then the path aliasing mechanism is activated and the
defined files are processed as follows:

The global path aliasing file is read.•
The user path aliasing file is read if present and it is appended to the global file.•
Lines not skipped will be processed from top to bottom.•
All lines are selected where the hostname matches the submit hostname. The submit
client is executed where the source path forms the initial part of the current working
directory or one of the source path replacements that where previously selected.

•

All selected entries are passed along with the job to the execution host.•
The leading part of the current working directory on the execution host are replaced
by the source path replacement where execution host string matches. The current
working directory is changed further when there are entries where the host string and
the initial part of the modified working directory matches.

•

Here is an example for a path aliasing file that replaces the occurrence of /tmp_mnt/ by /.

 # Path Aliasing File
 # src-path sub-host exec-host replacement
 /tmp_mnt * * /

161

3.13 Using CUDA Load Sensor

The CUDA load sensor enables the Univa Grid Engine installation GPU device awareness for
extended execution host status tracking and for CUDA aware scheduling purposes.

The following metrics will be reported by this additional load sensor:

Total installed GPU memory•
Total memory allocated•
Total free memory•
ECC Errors Total•
GPU temperature•
Power usage (in milliwatts)•

These values will be reported by the load sensor and allow the end-user of Univa Grid Engine
to specify their requirements as part of the resource request list in qsub. Of particular
mention is the fact that when the hardware does not support ECC memory, so eccEnabled
reports 0 and the ECC error counts are unavailable.

Beginning with Univa Grid Engine 8.0.1 a sample CUDA loadsensor (written in C) is provided
as source code as well as a pre-compiled binary (for lx-amd64). The pre-compiled binary
was build against CUDAtools and CUDAtoolkit version 4.0.17. Both files are located in the
$SGE_ROOT/util/resources/loadsensors/ directory, the pre-compiled binary in the
lx-amd64 directory below.

3.13.1 Building the CUDA load sensor

The CUDA load sensor source code (non-open source) is available at
$SGE_ROOT/util/resources/loadsensors/cuda_loadsensor.c. The file should be
moved to an appropriate directory where the load sensor binary is going to be built.

In order to build the load sensor following 3 packages must be available (they can be
downloaded from NVIDIA):

cudatools (tested with 4.0.17)•
cudatoolkit (tested with 4.0.17)•
the NVIDIA driver itself•

In order to build the load sensor a Makefile similar to the one below can be used. The
CUDA_TOOLKIT_HOME, CUDA_TOOLS_HOME, and NVIDIA_DRIVER_HOME variables must
be adapted according to the download paths of the NVIDIA packages. The file has to be
saved as Makefile in the directory of the cuda_load_sensor.c file. With the make
command the load sensor can be built.

make

162

3.13.1.1 Example Makefile for building the CUDA load sensor

CUDA_TOOLKIT_HOME = /tools/PKG/cudatoolkit_4.0.17
CUDA_TOOLS_HOME = /tools/PKG/cudatools_4.0.17
NVIDIA_DRIVER_HOME = /tools/PKG/NVIDIA-driver-270.41.19

CUDA_CFLAGS=-Wall -g -Wc++-compat -Werror
CUDA_INCLUDE=-I$(CUDA_TOOLKIT_HOME)/include -I$(CUDA_TOOLS_HOME)/NVML
CUDA_LDFLAGS=-L$(CUDA_TOOLKIT_HOME)/lib64 -L$(NVIDIA_DRIVER_HOME)
CUDA_LIBS=-lnvidia-ml

CUDA_SRC=cuda_load_sensor.c
CUDA_OBJS=$(CUDA_SRC:.c=.o)

global rules: all, clean, depend

all: cuda_load_sensor

clean:
 $(RM) $(CUDA_OBJS) cuda_load_sensor

rules to build the CUDA load sensor

cuda_load_sensor: $(CUDA_OBJS)
 $(CC) -o cuda_load_sensor $(CUDA_OBJS) $(CUDA_LDFLAGS) $(CUDA_LIBS)

rules to build object codes

cuda_load_sensor.o: cuda_load_sensor.c
 $(CC) $(CUDA_CFLAGS) $(CUDA_INCLUDE) -c cuda_load_sensor.c

3.13.2 Installing the load sensor

3.13.2.1 Add "cuda" complex value

A new cuda complex is needed in order to let Univa Grid Engine manage access to the GPU
devices.

With qconf -mc the following value has to be added:

cuda cuda INT <= YES JOB 0 1000

This defines a new complex value as a per job consumable, i.e. one job always consumes at
most one instance of the complex (if requested and granted from the scheduler) whether it is
a sequential or a parallel job (using more than one slot).

In order to make the values of the cuda load sensor usable within Univa Grid Engine they
have to be added to the complex configuration as well. This can be done with the
install_cuda_complexes.sh script, which is located in
$SGE_ROOT/util/resources/loadsensors. The complexes are added with the
--install argument:

./install_cuda_complexes.sh --install

163

and the complexes can be removed with the --uninstall argument.

./install_cuda_complexes.sh --uninstall

3.13.2.2 Assign "cuda" complex value to CUDA-enabled nodes

For all nodes (exchange their names with hostname) which have one CUDA GPU card
installed the host complex cuda needs to initialized.

qconf -aattr exechost complex_values cuda=1 <hostname>

To remove the "cuda" complex value, following step must be performed:

qconf -dattr exechost complex_values cuda=1

3.13.2.3 Install the load_sensor

Use qconf -mconf <hostname> to add the load sensor (substitute PATHTO with the real
path to the load sensor) to all hosts which have a CUDA load sensor installed:

load_sensor /PATHTO/cuda_load_sensor

3.13.2.4 Installation Test

Use the following command to test for the load sensor:

qconf -se <hostname>

Metrics reported by the CUDA load sensor should be reported in load_values.

 Note
The load sensor will take at least one load report interval before it starts reporting values.

3.13.3 Using the CUDA load sensor

In order to submit a CUDA enabled application to hosts with GPU devices just the cuda
complex must be requested during submission time.

qsub -l cuda=1 ... <your_application>

Then the Univa Grid Engine scheduler dispatches the job only to a host with an unused GPU
device. If all GPU devices are in use by other Univa Grid Engine jobs, then the job remains in
the pending job list (job state qw) waiting for a free device.

The CUDA load sensor itself reports numerous status values of the device. They can be used
either for tracking the status or also for scheduling purposes. An example output (generated
by an qstat -F statement) looks like following:

queuename qtype resv/used/tot. load_avg arch states

164

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

all.q@hostname BIPC 0/0/10 0.00 lx-amd64
 hl:cuda.verstr=270.41.06
 hl:cuda.0.name=GeForce 8400 GS
 hl:cuda.0.totalMem=511.312M
 hl:cuda.0.freeMem=500.480M
 hl:cuda.0.usedMem=10.832M
 hl:cuda.0.eccEnabled=0
 hl:cuda.0.temperature=44.000000
 hl:cuda.1.name=GeForce 8400 GS
 hl:cuda.1.totalMem=511.312M
 hl:cuda.1.freeMem=406.066M
 hl:cuda.1.usedMem=20.274M
 hl:cuda.1.eccEnabled=0
 hl:cuda.1.temperature=43.000000
 hl:cuda.devices=2

3.14 Special Tools

3.14.1 The Loadcheck Utility

The loadcheck utility is located in the 'utilbin' directory of $SGE_ROOT. It retrieves and
shows load values of the host, where it is started. It shows the number of detected
processors, the execution host topology (if it can be retrieved), and CPU/memory load
values.

../utilbin/lx-amd64> ./loadcheck
arch lx-amd64
num_proc 1
m_socket 1
m_core 1
m_thread 1
m_topology SC
load_short 0.07
load_medium 0.14
load_long 0.07
mem_free 1532.828125M
swap_free 2053.996094M
virtual_free 3586.824219M
mem_total 1960.281250M
swap_total 2053.996094M
virtual_total 4014.277344M
mem_used 427.453125M
swap_used 0.000000M
virtual_used 427.453125M
cpu 0.0%

The default format for the memory values can be turned into an integer format with the
parameter -int. Additionally it has a build-in debugging facility for obtaining more details
about the execution host topology and the core binding feature. When the application is
called with the -cb switch, it prints out internal kernel statistics (on Solaris) and on Linux the
mapping of socket/core numbers to the internal processor ID.

> ./loadcheck -cb
Your UGE Linux version has built-in core binding functionality!

165

Your Linux kernel version is: 2.6.34.7-0.7-desktop
Amount of sockets: 1
Amount of cores: 1
Amount of threads: 1
Topology: SC
Mapping of logical socket and core numbers to internal
Internal processor ids for socket 0 core 0: 0

3.14.2 Utilities for BDB spooling

Univa Grid Engine can be configured to use a Berkeley DB for spooling in sge_qmaster.

Berkeley DB comes with a number of commandline tools, some of which can be useful for
operating and debugging Univa Grid Engine spooling.

 Warning
Do not use these tools on a database which is in use by an active sge_qmaster.

Only use the tools when advised to do so by a support engineer.

The following tools are delivered with Univa Grid Engine:

db_deadlock: Deadlock detection utility.•
db_dump: Database dump utility - used for doing backup by inst_sge -bup•
db_load: Database load utility - used for restoring a database dump, called by
inst_sge -rst

•

db_printlog: Transaction log display utility.•
db_recover: Recovery utility.•
db_stat: Statistics utility.•
db_upgrade: Database upgrade utility.•
db_verify: Verification utility.•

The full Berkeley DB documentation for these tools is part of the Univa Grid Engine
distribution in the common package. To access it, view
$SGE_ROOT/doc/berkeleydb/utility/index.html with a web browser.

Go back to the Univa Grid Engine Documentation main page.

166

file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23
file://localhost/private/var/folders/5f/_m7knrvx3zxgmyr6qpd0mpt00000gn/T/WebKitPDFs-X5w6YQ/%23

	Table of Contents
	1 Navigating and Understanding
	1.1 Navigating the Univa Grid Engine System
	1.1.1 Location of Univa Grid Engine Configuration Files and Binaries
	1.1.2 Displaying Status Information
	1.1.2.1 Displaying Job Status Information
	1.1.2.2 Understanding the Various Job States
	1.1.2.3 Displaying Host Status Information
	1.1.2.4 Understanding the Various Host States
	1.1.2.5 Displaying Queue Status Information
	1.1.2.6 Understanding the Various Queue States

	1.2 Understanding a Default Installation
	1.2.1 Default Queue
	1.2.2 Default PE
	1.2.3 Default User Set Lists
	1.2.4 Default Host Group List
	1.2.5 Default Complex Attributes

	1.3 Understanding Key Univa Grid Engine Configuration Objects
	1.3.1 The Cluster Configuration
	1.3.2 The Scheduler Configuration
	1.3.3 Host and Queue Configurations

	1.4 Navigating the ARCo Database
	1.4.1 Accessing the ARCo Database
	1.4.2 Views to the Database
	1.4.2.1 Accounting
	1.4.2.1.1 view_accounting

	1.4.2.2 Job related Information
	1.4.2.2.1 view_job_log
	1.4.2.2.2 view_job_times
	1.4.2.2.3 view_jobs_completed

	1.4.2.3 Advance Reservation Data
	1.4.2.3.1 view_ar_attribute
	1.4.2.3.2 view_ar_log
	1.4.2.3.3 view_ar_resource_usage
	1.4.2.3.4 view_ar_time_usage
	1.4.2.3.5 view_ar_usage

	1.4.2.4 Values Related to Univa Grid Engine Configuration Objects
	1.4.2.4.1 view_department_values
	1.4.2.4.2 view_group_values
	1.4.2.4.3 view_host_values
	1.4.2.4.4 view_project_values
	1.4.2.4.5 view_queue_values
	1.4.2.4.6 view_user_values

	1.4.2.5 Statistics
	1.4.2.5.1 view_statistic

	1.4.3 Database Tables
	1.4.3.1 Job Data and Accounting
	1.4.3.1.1 sge_job
	1.4.3.1.2 sge_job_log
	1.4.3.1.3 sge_job_request
	1.4.3.1.4 sge_job_usage

	1.4.3.2 Advance Reservation Data
	1.4.3.2.1 sge_ar
	1.4.3.2.2 sge_ar_attribute
	1.4.3.2.3 sge_ar_log
	1.4.3.2.4 sge_ar_resource_usage
	1.4.3.2.5 sge_ar_usage

	1.4.3.3 Values Related to Univa Grid Engine Configuration Objects
	1.4.3.3.1 sge_department
	1.4.3.3.2 sge_group
	1.4.3.3.3 sge_host
	1.4.3.3.4 sge_project
	1.4.3.3.5 sge_queue
	1.4.3.3.6 sge_user
	1.4.3.3.7 sge_department_values
	1.4.3.3.8 sge_group_values
	1.4.3.3.9 sge_host_values
	1.4.3.3.10 sge_project_values
	1.4.3.3.11 sge_queue_values
	1.4.3.3.12 sge_user_values

	1.4.3.4 Sharetree Usage
	1.4.3.4.1 sge_share_log

	1.4.3.5 Statistics
	1.4.3.5.1 sge_statistic
	1.4.3.5.2 sge_statistic_values

	1.4.3.6 dbwriter Internal Data
	1.4.3.6.1 sge_checkpoint
	1.4.3.6.2 sge_version

	2 Common Tasks
	2.1 Common Administrative Tasks in a Univa Grid Engine System
	2.1.1 Draining Then Stopping the Cluster
	2.1.2 Starting Up and Activating Nodes Selectively
	2.1.3 Adding New Execution Hosts to an Existing Univa Grid Engine System
	2.1.4 Generate/Renew Certificates and Private Keys for Users
	2.1.5 Backup and Restore the Configuration
	2.1.5.1 Creating a Manual Backup
	2.1.5.2 Automating the Backup Process
	2.1.5.3 Restoring from a Backup

	2.2 Managing User Access
	2.2.1 Setting Up a Univa Grid Engine User
	2.2.2 Administrators
	2.2.3 Operators and Owners
	2.2.4 User Access Lists and Departments
	2.2.4.1 Commands to Add, Modify Delete Access Lists
	2.2.4.2 Configuration Parameters of Access Lists

	2.2.5 Projects
	2.2.5.1 Commands to Add, Modify Delete Projects
	2.2.5.2 Configuration Parameters of Projects

	2.3 Understanding and Modifying the Cluster Configuration
	2.3.1 Commands to Add, Modify, Delete or List Global and Local Configurations
	2.3.2 Configuration Parameters of the Global and Local Configurations

	2.4 Understanding and Modifying the Univa Grid Engine Scheduler Configuration
	2.4.1 The Default Scheduling Scheme

	2.5 Configuring Properties of Hosts and Queues
	2.5.1 Configuring Hosts
	2.5.1.1 Local Cluster Configuration
	2.5.1.2 Execution Host Configuration
	2.5.1.3 Administrative and Submit Hosts
	2.5.1.4 Grouping of Hosts
	2.5.1.5 Example: Grouping Host-Groups in a Tree Structure

	2.5.2 Configuring Queues
	2.5.2.1 Example: Adding a New Queue, Showing the Queue Configuration and Deleting the Queue
	2.5.2.2 Queue Configuration Attributes
	2.5.2.2.1 Queue Limits
	2.5.2.2.2 Queue Sequencing and Thresholds
	2.5.2.2.3 Queue Checkpoints, Processing and Type
	2.5.2.2.4 Queue Scripting
	2.5.2.2.5 Queue Signals and Notifications
	2.5.2.2.6 Queue Access Controls and Subordination
	2.5.2.2.7 Queue Complexes
	2.5.2.2.8 Queue Calendar and State

	2.5.3 Utilizing Complexes and Load Sensors
	2.5.3.1 Configuring Complexes
	2.5.3.1.1 Adding, Modifying and Deleting Complexes
	2.5.3.1.2 Initializing Complexes
	2.5.3.1.3 Using Complexes

	2.5.3.2 Configuring Load Sensors

	2.5.4 Advanced Attribute Configuration
	2.5.4.1 Example: Modification of a Queue Configuration

	2.6 Monitoring and Modifying User Jobs
	2.7 Diagnostics and Debugging
	2.7.1 Diagnosing Scheduling Behavior
	2.7.2 Location of Logfiles and Interpreting Them
	2.7.3 Turning on Debugging Information
	2.7.3.1 Activating Scheduler Profiling
	2.7.3.2 Activating Scheduler Monitoring
	2.7.3.2.1 Find Reasons Why Jobs are Not Started
	2.7.3.2.2 Enable Monitoring to Observe Scheduler Decisions

	2.7.3.3 Activate Debugging Output from the Command-Line and How to Interpret It
	2.7.3.4 Using DTrace for Bottleneck Analysis

	3 Special Activities
	3.1 Tuning Univa Grid Engine for High Throughput
	3.1.1 sge_qmaster Tuning
	3.1.1.1 Setup Options
	3.1.1.2 Configuration Options

	3.1.2 Tuning Scheduler Performance
	3.1.3 Reducing Overhead on the Execution Side
	3.1.3.1 Local sge_execd Spooling
	3.1.3.2 Switch off PDC

	3.1.4 Choosing Job Submission Options

	3.2 Tuning Univa Grid Engine for Large Parallel Applications
	3.2.1 General Settings
	3.2.1.1 Interactive Job Support
	3.2.1.2 Accounting Summary

	3.2.2 Tuning on the Execution Side
	3.2.2.1 Tuning sge_execd
	3.2.2.2 Reducing Impact of sge_execd on the Execution Host

	3.2.3 Job Related Tuning

	3.3 Optimizing Utilization
	3.3.1 Using Load Reporting to Determine Bottlenecks and Free Capacity
	3.3.2 Scaling the Reported Load
	3.3.2.1 Example: Downscale load_short by a Factor of 10

	3.3.3 Alternative Means to Determine the Scheduling Order
	3.3.3.1 Queue Sequence Number
	3.3.3.1.1 Example: Defining the Queue Order
	3.3.3.1.2 Example: Defining the Order on Queue Instance Level
	3.3.3.1.3 Example: Antipodal Sequence Numbering of Queues

	3.4 Managing Capacities
	3.4.1 Using Resource Quota Sets
	3.4.2 Using Consumables

	3.5 Implementing Preemption Logic
	3.5.1 When to Use Preemption
	3.5.2 Utilizing Queue Subordination
	3.5.2.1 Example: Suspend all low priority jobs on a host whenever a job is running in the high priority queue

	3.5.3 Advanced Preemption Scenarios
	3.5.3.1 Example: Mixing exclusive high priority jobs with low priority jobs

	3.6 Integrating Univa Grid Engine With a License Management System
	3.6.1 Integrating and Utilizing QLICSERVER

	3.7 Managing Priorities and Usage Entitlements
	3.7.1 Fair-Share (Share Tree) Ticket Policy
	3.7.1.1 Halftime and Compensation Factor

	3.7.2 Functional Ticket Policy
	3.7.3 Override Ticket Policy
	3.7.4 Urgency Policy
	3.7.4.1 Wait Time Urgency
	3.7.4.2 Deadline Urgency
	3.7.4.2.1 Example

	3.7.4.3 Resource-Dependent Urgencies

	3.7.5 User Policy: POSIX Policy
	3.7.5.1 Example

	3.8 Advanced Management for Different Types of Workloads
	3.8.1 Parallel Environments
	3.8.1.1 Commands to Configure Parallel Environment Object
	3.8.1.2 Configuration Parameters of Parallel Environments
	3.8.1.3 Setup Parallel Environment for PVM Jobs
	3.8.1.4 Submitting Parallel Jobs

	3.8.2 Setting Up Support for Interactive Workloads
	3.8.3 Setting Up Support for Checkpointing Workloads
	3.8.3.1 Commands to Configure Checkpointing Environments
	3.8.3.2 Configuration Parameters for Checkpointing Environments

	3.8.4 Enabling Reservations
	3.8.4.1 Reservation and Backfilling
	3.8.4.2 Advance Reservation

	3.8.5 Simplifying Job Submission Through the Use of Default Requests
	3.8.6 Job Submission Verifiers
	3.8.6.1 Using JSVs for Ensuring Correctness of Job Submissions
	3.8.6.1.1 Locations to Enable JSV
	3.8.6.1.2 JSV Language Support
	3.8.6.1.3 JSV Script Interface Functions
	3.8.6.1.4 Parameter Names of JSV Job Specifications

	3.8.6.2 Using JSVs for Integrating Univa Grid Engine With Other Facilities

	3.8.7 Enabling and Disabling Core Binding
	3.8.7.1 Example: Enabling Core Binding on Host host1

	3.8.8 The Univa Grid Engine Hadoop Integration
	3.8.8.1 Brief Introduction to Apache Hadoop
	3.8.8.2 Benefits of Using Hadoop with Univa Grid Engine
	3.8.8.3 How Hadoop is Integrated with Univa Grid Engine
	3.8.8.4 Installing the Hadoop Integration
	3.8.8.4.1 Installation Prerequisites
	3.8.8.4.2 Installing the Hadoop Integration Package
	3.8.8.4.3 Verifying the Hadoop Integration
	3.8.8.4.4 Troubleshooting the Hadoop Integration

	3.9 Ensuring High Availability
	3.9.1 Prerequisites
	3.9.2 Installation
	3.9.3 Testing sge_shadowd Takeover
	3.9.4 Migrating the Master Host Back After a Takeover
	3.9.5 Tuning the sge_shadowd
	3.9.6 Troubleshooting
	3.9.6.1 How do I know which host is currently running sge_qmaster?
	3.9.6.2 Where do I find run time information of running shadow daemons?
	3.9.6.3 Startup of sge_qmaster on a shadow host failed. Where do I find information for analyzing the problem?

	3.10 Utilizing Calendar Schedules
	3.10.1 Commands to Configure Calendars
	3.10.2 Calendars Configuration Attributes
	3.10.3 Examples to Illustrate the use of Calendars

	3.11 Setting Up Nodes for Exclusive Use
	3.12 Deviating from a Standard Installation
	3.12.1 Utilizing Cells
	3.12.2 Using Path Aliasing

	3.13 Using CUDA Load Sensor
	3.13.1 Building the CUDA load sensor
	3.13.1.1 Example Makefile for building the CUDA load sensor

	3.13.2 Installing the load sensor
	3.13.2.1 Add "cuda" complex value
	3.13.2.2 Assign "cuda" complex value to CUDA-enabled nodes
	3.13.2.3 Install the load_sensor
	3.13.2.4 Installation Test

	3.13.3 Using the CUDA load sensor

	3.14 Special Tools
	3.14.1 The Loadcheck Utility
	3.14.2 Utilities for BDB spooling

