
Python Language Basics I

1

Georgia Advanced Computing Resource Center (GACRC)

Enterprise Information Technology Services(EITS)

The University of Georgia

Outline

• GACRC

• Python World

• General Lexical Conventions

• Basic Built-in Data Types

2

Wiki: http://wiki.gacrc.uga.edu

Support: https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593

Web Site: http://gacrc.uga.edu

3GACRC SAPELO2 CLUSTER NEW USER TRAINING WORKSHOP5/7/2020

GACRC
 A high-performance-computing (HPC) center at the UGA

 Provide to the UGA research and education community an advanced computing

environment:

• HPC computing and networking infrastructure located at the Boyd Data Center

• Comprehensive collection of scientific, engineering and business applications

• Consulting and training services

http://wiki.gacrc.uga.edu/
https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593
http://gacrc.uga.edu/

Python World

• What is Python

• Scientific Python Modules

• Scientific Python Distributions

• Run Python Interactively on Sapelo2

4

What is Python
• Open source general-purpose scripting language (https://www.python.org/)

• Working with procedural, object-oriented, and functional programming

• Glue language with Interfaces to other languages, like C/C++ (via SWIG),

Object-C (via PyObjC), Java (Jython), and Fortran (via F2PY) , etc.

(https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages)

• Last Python2 version is 2.7.16; Latest Python3 version is 3.8.2; Current

Python3 version on Sapelo2 is 3.7.4

5

https://www.python.org/
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages

Scientific Python Modules
• Python has a large collection of built-in modules included in standard

distributions, e.g., io, os, sys, datetime, argparse, etc.:

https://docs.python.org/3/index.html

https://docs.python.org/3/library/index.html

• Packages for scientific modules:

6

 NumPy

 Biopython

 SciPy

 TensorFlow

 Matplotlib

 PyTorch

https://docs.python.org/3/index.html
https://docs.python.org/3/library/index.html

Scientific Python Modules

 NumPy: Matlab-ish capabilities, fast N-D array operations, linear algebra, etc.

(http://www.numpy.org/)

 SciPy: Fundamental library for scientific computing (http://www.scipy.org/)

 matplotlib: High quality plotting (http://matplotlib.org/)

 TensorFlow: Open source platform for machine learning

(https://www.tensorflow.org/)

 PyTorch: Open source machine learning library (https://pytorch.org/)

7

http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
https://www.tensorflow.org/
https://pytorch.org/

Scientific Python Distributions
• Anaconda

 Comes with 1,500 packages selected from PyPI as well as the conda
package and virtual environment manager

 Supports Linux, Mac and Windows (https://www.anaconda.com/)

• Python(x,y)

 A scientific-oriented Python Distribution based on Qt and Spyder

 Windows only (https://python-xy.github.io/)

• WinPython

 A free open-source portable distribution of the Python

 Windows only (https://github.com/winpython)

8

https://www.anaconda.com/
https://python-xy.github.io/
https://github.com/winpython

9

Anaconda with Spyder IDE on my local computer:

Run Python Interactively on Sapelo2
• Run python interactively on interactive node (use qlogin from login node)

10

zhuofei@sapelo2-sub2 ~$ qlogin

qsub: waiting for job 2367783.sapelo2 to start

qsub: job 2367783.sapelo2 ready

zhuofei@n204 ~$ module load Python/3.7.4-GCCcore-8.3.0

zhuofei@n204 ~$ python

Python 3.7.4 (default, Jan 30 2020, 18:11:14)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information. >>> a = 7

>>> e = 2

>>> a**e

49

>>>

• script.py:

• Run a Python script on interactive node (use qlogin from login node):

11

zhuofei@sapelo2-sub2 ~$ qlogin

qsub: waiting for job 2367783.sapelo2 to start

qsub: job 2367783.sapelo2 ready

zhuofei@n204 ~$ module load Python/3.7.4-GCCcore-8.3.0

zhuofei@n204 ~$ python script.py

Hello, World!

49

print("Hello, World!")
a = 7
e = 2
print(a**e)

Run Python Interactively on Sapelo2

General Lexical Conventions
• A Python code clip:

12

x = 10; y = "Hello!” # this is a comment
z = 3.14 # z is a floating number

if z == 3.14 or y == "Hello!":
x = x + 1
y = y + " Python!"

print x
print y

• Semicolon ; to separate statements on the

same line

• Hash # denotes a comment

• Assignment uses = ; comparison uses ==

• Logical operators are words: and, or, not

• Consistent indention within a block (4 spaces)

• For numbers: + - * / % are as expected

For strings: + means concatenation

• The basic printing statement: print

Basic Built-in Data Types
• “Python is a dynamically typed language where variable names are bound to

different values, possibly of varying types, during program execution.
Variables names are untyped and can be made to refer to any type of data.”

−Python Essential Reference, 4th ed.

13

a = 10 # a is created to refer to an integer

a = 3.24 # a is referring to a floating-point number now

a = “Hello!” # a is referring to a string now

a = True # a is referring to a boolean (True/False) now

Basic Built-in Data Types

14

Type Category Type Name Description

Numbers

int i = 10; integer

long l = 73573247851; arbitrary-precision integer (Python 2 only!)

float f = 3.14; floating point

complex c = 3 + 2j; complex

bool b = True; Boolean (True or False)

Sequences

str s = “Hello! Python”; character string

list lst = [1, 2, ”abc”, 2.0]; list of any typed elements (mutable!)

tuple t = (1, 2, “abc”, 2.0); record of any typed elements (immutable!)

Mapping dict d = {1:”apple”, 2:””}; mapping dictionary of any typed pairs of key:value

Basic Built-in Data Types
• List: A mutable sequence of arbitrary objects of any type

list1 = [1, “David”, 3.14, “Mark”, “Ann”]

index : 0 1 2 3 4 𝐼𝑛𝑑𝑒𝑥𝑚𝑎𝑥 = 𝐿𝑒𝑛𝑔𝑡ℎ − 1

 Indexed by integer, starting with zero:

 Empty list is created by:

 Append and insert new items to a list:

15

a = list1[1] # returns the 2nd item “David” ; a = “David”
list1[0] = “John” # changes the 1st item 1 to “John” ; list1 = [“John”, “David”, 3.14, “Mark”, “Ann”]

list2 = [] # an empty list
list2 = list() # an empty list

list1.append(7) # appends a new item to the end ; list1 = [“John”, “David”, 3.14, “Mark”, “Ann”, 7]
list1. insert(2, 0) # inserts a new item into a middle ; list1 = [“John”, “David”, 0, 3.14, “Mark”, “Ann”, 7]

Basic Built-in Data Types
 Extract and reassign a portion of a list by slicing operator [i, j], with an index range of i<=k<j:

 Delete items:

 Concatenate and multiply lists:

16

a = list1[0:2] # returns [“John”, “David”] ; the 3rd item 0 is NOT extracted!
b = list1[2:] # returns [0, 3.14, “Mark”, “Ann”, 7]
list1[0:2] = [-3, -2, -1] # replaces the first two items with the list on the right

list1 = [-3, -2, -1, 0, 3.14, “Mark”, “Ann”, 7]

del list1[0] # deletes the 1st item ; list1 = [-2, -1, 0, 3.14, “Mark”, “Ann”, 7]
del list1[0:4] # delete a slice of the first 4 items ; list1 = [“Mark”, “Ann”, 7]

list2 = [8, 9] # creates a new list
list3 = list1 + list2 # list3 = [“Mark”, “Ann”, 7, 8, 9]
list4 = list1 * 3 # list4 = [“Mark”, “Ann”, 7, “Mark”, “Ann”, 7, “Mark”, “Ann”, 7]

Basic Built-in Data Types
 Count occurrences of items:

 Remove an item from a list:

 Sort a list in place:

 Reverse a list in place:

 Copy a list (shallow copy):

17

list1.remove(“Ann”) # Search for “Ann” and remove it from list1 ; list1 = [“Mark”, 7]

list6 = list(list5) # list6 is a shallow copy of list5

list5 = [10, 34, 7, 8, 9] # creates a new list
list5.sort() # list5 = [7, 8, 9, 10, 34]

list5.reverse() # list5 = [34, 10, 9, 8, 7]

list4.count(“Mark”) # returns 3

Basic Built-in Data Types
• Tuple: A immutable record of arbitrary objects of any type

t1 = (1, “David”, 3.14, “Mark”, “Ann”)

index : 0 1 2 3 4

 Indexed by integer, starting with zero:

 0-tuple (empty tuple) and 1-tuple:

 Extract a portion of a list by slicing operator [i, j], with an index range of i<=k<j:

18

a = t1[1] # returns the 2nd item “David” ; a = “David”
t1[0] = “John” # Wrong operations! Tuple is immutable!

t2 = () # an empty tuple ; same as t2 = tuple()
t3 = (“apple”,) # a tuple containing 1 item ; note the trailing comma!

a = t1[0:2] # returns (1, “David”) ; the 3rd item 3.14 is NOT extracted!
b = t1[2:] # returns (3.14, “Mark”, “Ann”)

Basic Built-in Data Types
 Concatenate and multiply tuples:

 Count occurrences of items:

 Extract values in a tuple without using index:

19

t4 = t1 + t3 # t4 = (1, “David”, 3.14, “Mark”, “Ann”, “apple”)
t5 = t3 * 3 # t5 = (“apple”, “apple”, “apple”)

t5.count(“apple”) # returns 3

t6 = (1, 2, 3) # create a new tuple
a, b, c = t6 # a = 1 ; b = 2 ; c = 3
person = (“John”, “Smith”, 30) # another example
first_name, last_name, age = person # first_name = “John” ; last_name = “Smith” ; age = 30

Basic Built-in Data Types
• String: A immutable sequence of characters

s = “HELLO”

index : 0 1 2 3 4

 To create a string, enclose characters in single(‘ ’), double(“ ”), or triple(“““ ””” or ‘‘‘ ’’’) quotes:

20

a = ‘Mark’ # ‘ ’ is usually for short strings
b = “Python is good!” # “ ” is usually for string messages to be visible to human
c = “““This function # “““ ””” or ‘‘‘ ’’’ is usually for Python doc strings ; can be used for a string
is for # spanning multiple lines
calculation of PI”””

d = ‘we say “yes!”’ # same type of quotes used to start a string must be used to terminate it!
d = “we say ‘yes!’”
d = “““we say ‘yes!’”””
d = ‘‘‘we say “yes!”’’’

Basic Built-in Data Types
 Indexed by integer, starting with zero:

 Extract a portion of a string by slicing operator [i, j], with an index range of i<=k<j:

 Concatenate and multiply strings:

21

a = “Hello Python!” # a string a[0] = ‘H’ , a[1] = ‘e’ , a[2] = ‘l’ , a[3] = ‘l’ , …… , a[11] = ‘n’ , a[12] = ‘!’
b = a[4] # b = ‘o’

b = a[0:5] # b = ‘Hello’
b = a[6:] # b = ‘Python!’
b = a[4:7] # b = ‘o P’

c = “My name is John.” # a new string
d = a + ’ ’ + c # d = “Hello Python! My name is John.”
d = a * 2 # d = “Hello Python!Hello Python!”

Basic Built-in Data Types
 Conversion between numbers and strings :

 Common string methods:

Next Page!

22

a = ‘77’ ; b = ’23’ # two numeric strings
c = a + b # c = ’7723’ ; string concatenation ; NO numeric evaluation!
c = int(a) + int(b) # c = 100
c = float(a) + int(b) # c = 100.0

i = 77 ; f = 23.0 # two numbers
a = str(i) # a = ‘77’
b = str(f) # b = ’23.0’

Basic Built-in Data Types

23

String Methods Description Examples

s.capitalize() Capitalize the 1st character “Python is good!”

s.center(w, p)
s.ljust(w, p) s.rjust(w, p)

Centers s in a field of length w, padding with p
Left-align/Right-align s with w and p

(w=30, p=‘-’) : -------python is good!--------
python is good!---------------

s.count(substr) Counts occurrences of substr s.count(‘o’) returns 3

s.isalpha() s.isdigit() s.isalnum()
s.islower() s.isupper()

True if all characters in s are
alphabetic/digits/alphanumeric/lowercase/uppercase

s.isalpha() returns True
s.islower() returns True

s.find(substr) Finds the 1st occurrence of substr or returns -1 s.find(‘good’) returns 10

s.index(substr) Finds the 1st occurrence of substr or raises an error s.index(‘good’) returns 10

s.replace(old, new) Replaces a substring s.replace(‘good’, ‘bad’) returns “python is bad!”

s.split(sep) Splits a string using sep as a delimiter s.split(‘is’) returns ['python ', ' good!']

s.partition(sep) Partitions a string based on sep; returns (head, sep, tail) s.partition(‘is’) returns ('python ', 'is', ' good!')

s = “python is good!”

Basic Built-in Data Types
• Built-in operations common to all sequences: list, tuple, and string

24

Operations Description Examples

seq[i]
seq[i:j]

Returns the element at index i
Returns a slice with an index range of i<=k<j

s[0] returns ‘p’
s[0:6] returns ‘python’

len(seq) Number of elements in seq len(s) returns 15

min(seq) Minimum value in seq min(s) returns ‘ ’

max(seq) Maximum value in seq max(s) returns ‘y’

sum(seq) Sum of items in seq ; ONLY working for numeric list or tuple! sum(list1) returns 10

all(seq) True if all items in seq are True all(list1) returns False

any(seq) True if any item in seq is True any(list1) returns True

s = “python is good!”

list1 = [0, 1, 2, 3, 4]

Thank You!

25

I : Python introduction, running python, Python built-in data types

II : function (procedural and functional programming) and class (OOP)

III: module, package, and practical code sample

Let’s talk about Python function and class
on next class!

