Using the Sapelo2 Cluster at the GACRC

Cluster New User Training Workshop

Georgia Advanced Computing Resource Center (GACRC)
EITS/University of Georgia
Zhuofei Hou zhuofei@uga.edu
Outline

• GACRC

• Sapelo2 Cluster
 ➢ Diagram
 ➢ Overview
 ➢ Three Directories
 ➢ Three Computational Queues
 ➢ Software on Cluster

• Job Submission Workflow

• Work on Sapleo2
GACRC

- We are a high-performance-computing (HPC) center at UGA
- We provide to the UGA research and education community an advanced computing environment:
 - HPC computing and networking infrastructure located at the Boyd Data Center
 - Comprehensive collection of scientific, engineering and business applications
 - Consulting and training services

- http://wiki.gacrc.uga.edu (GACRC Wiki)
- https://wiki.gacrc.uga.edu/wiki/Getting_Help (GACRC Support)
- http://gacrc.uga.edu (GACRC Web)
Sapelo2 Cluster

1. ssh with MyID and password
2. Verify with Archpass Duo two-factor authentication

- **Node**: Computer for a specific function on cluster, e.g., login node
- **Queue**: Collection of compute nodes for specific computing need
- **Cluster**: Nodes + Drives, all connected by network
Sapelo2: A Linux HPC cluster (64-bit Centos 7)

- Two Nodes:
 1. Login node for batch job workflow: MyID@sapelo2.gacrc.uga.edu
 2. Transfer node for data transferring: MyID@xfer.gacrc.uga.edu

- Three Directories:
 1. Home: Landing spot; 100GB quota; Backuped
 2. Global Scratch: High performance job working space; NO quota; NOT backuped
 3. Storage: Temporary data parking; 1TB quota (for group); Backuped (ONLY accessible from Transfer node!)

- Three Computational Queues: batch, highmem_q, gpu_q
Three Directories

<table>
<thead>
<tr>
<th>Role</th>
<th>Directory</th>
<th>Intended Use</th>
<th>Quota</th>
<th>Accessible from</th>
<th>Backedup</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>/home/MyID</td>
<td>Static data: 1. Scripts, source codes 2. Local software</td>
<td>100GB</td>
<td>Login Transfer</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Global Scratch</td>
<td>/lustre1/MyID</td>
<td>Current job data: data being read/written by running jobs</td>
<td>No Limit</td>
<td></td>
<td>No</td>
<td>User to clean up! Subject to deletion in 30 days</td>
</tr>
<tr>
<td>Storage</td>
<td>/project/abclab</td>
<td>Temporary data parking: non-current active data</td>
<td>1TB (Initial)</td>
<td>Transfer</td>
<td>Yes</td>
<td>Group sharing possible</td>
</tr>
</tbody>
</table>
Three Directories (Cont.) – Accessing Directories from Nodes

- **/home/MyID**
- **/lustre1/MyID**
- **/project/abclab**

Login ➔ **Interactive** ➔ **Transfer**

- **User**
 - Log on using ssh
 - qlogin
 - exit
 - Log on using ssh
Three Computational Queues

<table>
<thead>
<tr>
<th>Queue</th>
<th>Node Feature</th>
<th>Total Nodes</th>
<th>Max RAM(GB) /Node</th>
<th>Cores /Node</th>
<th>Processor Type</th>
<th>GPU Cards /Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>batch</td>
<td>Intel</td>
<td>30</td>
<td>62</td>
<td>28</td>
<td>Intel Xeon</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>AMD</td>
<td>40</td>
<td>125</td>
<td>48</td>
<td>AMD Opteron</td>
<td></td>
</tr>
<tr>
<td>highmem_q</td>
<td>Intel</td>
<td>1</td>
<td>997</td>
<td>28</td>
<td>Intel Xeon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMD</td>
<td>2</td>
<td>503</td>
<td>48</td>
<td>AMD Opteron</td>
<td></td>
</tr>
<tr>
<td>gpu_q</td>
<td>GPU</td>
<td>2</td>
<td>94</td>
<td>12</td>
<td>Intel Xeon</td>
<td>7 NVIDIA K20Xm</td>
</tr>
<tr>
<td>grpBuyin_q</td>
<td>variable</td>
<td>variable</td>
<td>variable</td>
<td>variable</td>
<td>variable</td>
<td>variable</td>
</tr>
</tbody>
</table>
Software on Cluster

1. Software names are long and have a Easybuild toolchain name associated to it, e.g., foss-2016b

2. Software names are case-sensitive!
 - ml avail: List all available software modules installed on cluster
 - ml moduleName: Load a module into your working environment
 - ml: List modules currently loaded
 - ml unload moduleName: Remove a module from your working environment
 - ml spider pattern: Search module names matching a pattern (case-insensitive)
Job Submission Workflow

1. Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo:
 \[\text{ssh MyID@sapelo2.gacrc.uga.edu} \]

2. On Login node, change directory to global scratch: \[\text{cd /lustre1/MyID} \]

3. Create a working subdirectory for a job: \[\text{mkdir ./workDir} \]

4. Change directory to \text{workDir}: \[\text{cd ./workDir} \]

5. Transfer data from local computer to \text{workDir}: use \text{scp} or \text{SSH File Transfer} to connect Transfer node
 Transfer data on cluster to \text{workDir}: log on to Transfer node and then use \text{cp} or \text{mv}

6. Make a job submission script in \text{workDir}: \[\text{nano ./sub.sh} \]

7. Submit a job from \text{workDir}: \[\text{qsub ./sub.sh} \]

8. Check job status: \text{qstat_me} or Cancel a job: \[\text{qdel JobID} \]
Step 1: Log on to Login node - Mac/Linux using ssh

1. Open Terminal utility

2. Type command line: `ssh MyID@sapelo2.gacrc.uga.edu`

3. You will be prompted for your MyID password

4. Sapelo2 access requires ID verification using two-factor authentication with Archpass Duo.

 If you are not enrolled in Archpass Duo, please refer to

 https://eits.uga.edu/access_and_security/infosec/tools/archpass_duo/ on how to enroll

 https://wiki.gacrc.uga.edu/wiki/Connecting
Step 1 (Cont.) - Mac/Linux

Use Terminal utility on Mac or Linux!

Log on

Input MyID password!

Select Duo login option!

I am on sapelo2-sub2!
Step1 (Cont.) - Windows

1. Download and install SSH Secure Utilities: http://eits.uga.edu/hardware_and_software/software/

2. You can use PuTTY as an alternative: https://www.putty.org/
Step 1 (Cont.) - Windows

You will be prompted for your MyID password after step 4.

5. Select Duo login option!
Step 2: On Login node change directory to global scratch

- Once you logged on, your current directory will be your **home directory**

  ```
  zhuofei@sapelo2-sub2 ~$ pwd
  /home/zhuofei
  ➡️ this is my home directory!
  ```

- Use **cd** command to change your current directory to /lustre1/MyID

  ```
  zhuofei@sapelo2-sub2 ~$ cd /lustre1/zhuofei
  zhuofei@sapelo2-sub2 zhuofei$ pwd
  /lustre1/zhuofei
  ➡️ this is my global scratch folder!
  ```

- Use **ls** command to take a look in /lustre1/MyID

  ```
  zhuofei@sapelo2-sub2 zhuofei$ ls
  user_test  workDir_Alex  workDir_bk
  ```
Step 3 - 4: Create and cd to a working subdirectory

- Use `mkdir` command to make a subdirectory in `/lustre1/MyID`

  ```
  zhuofei@sapelo2-sub2  zhuofei$ mkdir workDir
  zhuofei@sapelo2-sub2  zhuofei$ ls
  user_test  workDir  workDir_Alex  workDir_bk
  ```

- Use `cd` command to change your current directory to `/lustre1/MyID/workDir`

  ```
  zhuofei@sapelo2-sub2  zhuofei$ cd workDir
  zhuofei@sapelo2-sub2  zhuofei$ ls
  zhuofei@sapelo2-sub2  zhuofei$ ls
  ← it is empty!
  ```
Step 5: Transfer data from local computer to workDir - Mac/Linux

1. You need to connect to cluster’s Transfer node (xfer.gacrc.uga.edu)

2. Open Terminal utility on local computer to use scp (-r) [Source] [Target]

E.g. 1: working on local computer, from Local ➔ workDir on cluster

```bash
scp ./file zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/
scp -r ./folder/ zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/
```

E.g. 2: working on local computer, from workDir on cluster ➔ Local

```bash
scp zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/file .
scp -r zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/folder/ .
```
Step5 (Cont.) - Windows

1. You need to connect to cluster’s **Transfer node** (xfer.gacrc.uga.edu)

2. Use **SSH File Transfer** or FileZilla or WinSCP on local computer

You will be prompted for your **MyID password** after step 4.
Step5 (Cont.): Transfer data on cluster to workDir

- Log on to Transfer node (xfer.gacrc.uga.edu)
 - Mac/Linux: ssh MyID@xfer.gacrc.uga.edu (page 12, 13)
 - Windows: use SSH Secure Client app (page 14, 15)
- Landing folder: /home/MyID (Home)
- Transfer data between folders on cluster using cp, mv
- Directories you can access using full path:
 1. /home/MyID
 2. /lustre1/MyID
 3. /project/abclab
- Most file systems on Transfer are auto-mounted upon the first time full-path access, e.g.,
 cd /project/abclab/
Step 6: Make a job submission script in workDir using nano

$ nano sub.sh

Ctrl-x to save file and quit from nano

nano is a small and friendly text editor on Linux.
Step6 (Cont.)

1. Copy a sample script from GACRC Wiki Software:
 https://wiki.gacrc.uga.edu/wiki/Bowtie2-Sapelo2
2. Modify it as needed for your computing

To run this example, you need to copy input data to your current working folder:

cp -r /usr/local/training/index .
cp /usr/local/training/myreads.fq .

node feature (AMD or Intel) is NOT needed!
memory requested is enforced on cluster!
Step 7: Submit a job from workDir using qsub

```
zhuofei@sapelo2-sub2 workDir$ pwd
/lustre1/zhuofei/workDir
zhuofei@sapelo2-sub2 workDir$ ls
index myreads.fq sub.sh
zhuofei@sapelo2-sub2 workDir$ qsub sub.sh
11943.sapelo2
```

sub.sh is job submission script to

1. specify computing resources:
2. load software using `ml load`
3. run any Linux commands you want to run
4. run the software
Step 8: Check job status using `qstat_me`

```
zhuofei@sapelo2-sub2 workDir$ qstat_me

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time Use</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11943.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:06:40</td>
<td>C</td>
</tr>
<tr>
<td>11944.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:05:17</td>
<td>R</td>
</tr>
<tr>
<td>11946.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:12:51</td>
<td>R</td>
</tr>
<tr>
<td>11947.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>11948.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>0</td>
<td>Q</td>
</tr>
</tbody>
</table>
```

- **R**: job is running
- **C**: job completed (or canceled or crashed) and is not longer running. Jobs stay in this state for 24 hours.
- **Q**: job is pending, waiting for resources to become available

Note: “Time Use” is the CPU time, instead of the wall-clock time of your job staying on cluster!
Step8 (Cont.): Cancel job using qdel

```
zhuofei@sapelo2-sub2 workDir$ qdel 11947
zhuofei@sapelo2-sub2 workDir$ qstat_me
```

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time Use</th>
<th>S</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11943.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:06:40</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11944.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:05:17</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11946.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:12:51</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>11947.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td>00:00:09</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11948.sapelo2</td>
<td>bowtie2_test</td>
<td>zhuofei</td>
<td></td>
<td>Q</td>
<td>batch</td>
</tr>
</tbody>
</table>

job 11947 status is changed from R to C
C status will stay in list for >24 hour
Step8 (Cont.): Check Job using qstat -n -u MyID

```
zhuofei@sapelo2-sub2 workDir$ qstat -n -u zhuofei

dispatch.ecompute:

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Username</th>
<th>Queue</th>
<th>Jobname</th>
<th>SessID</th>
<th>NDS</th>
<th>TSK</th>
<th>Req'd Memory</th>
<th>Req'd Time</th>
<th>Elap Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>12175.sapelo2 zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>132442</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00</td>
<td>R</td>
<td>00:23:44</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>n238/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12176.sapelo2 zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>67226</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00</td>
<td>R</td>
<td>00:20:44</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>n237/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12177.sapelo2 zhuofei</td>
<td>batch</td>
<td>bowtie2_test</td>
<td>119643</td>
<td>1</td>
<td>1</td>
<td>2gb</td>
<td>01:00:00</td>
<td>R</td>
<td>00:05:44</td>
</tr>
</tbody>
</table>

Note: “Elap Time” is the wall-clock time, instead of the CPU time, which qstat_me can give you!

\[ \text{Job is running on node238/CPU0} \]
### Step 8 (Cont.): Check all Jobs on cluster using qstat

zhuofei@sapelo2-sub2 workDir$ qstat

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Name</th>
<th>User</th>
<th>Time Use</th>
<th>S</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11267.sapelo2</td>
<td>L80-500</td>
<td>jx57780</td>
<td>164:32:5</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11269.sapelo2</td>
<td>L80-502</td>
<td>jx57780</td>
<td>164:55:5</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11270.sapelo2</td>
<td>L80-503</td>
<td>jx57780</td>
<td>165:38:5</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11607.sapelo2</td>
<td>canu</td>
<td>gd98309</td>
<td>3414:46:</td>
<td>R</td>
<td>bergman_q</td>
</tr>
<tr>
<td>11726.sapelo2</td>
<td>..._3_constoptTS</td>
<td>sm39091</td>
<td>3157:30:</td>
<td>R</td>
<td>wheeler_q</td>
</tr>
<tr>
<td>11729.sapelo2</td>
<td>..._2_constoptTS</td>
<td>sm39091</td>
<td>2731:29:</td>
<td>R</td>
<td>wheeler_q</td>
</tr>
<tr>
<td>11790.sapelo2</td>
<td>sp2_run19b_dye</td>
<td>castelao</td>
<td>4412:52:</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11804.sapelo2</td>
<td>...e-4_Nnoise=64</td>
<td>cotter</td>
<td>98:26:20</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11806.sapelo2</td>
<td>...e-4_Nnoise=64</td>
<td>cotter</td>
<td>98:14:22</td>
<td>R</td>
<td>batch</td>
</tr>
<tr>
<td>11987.sapelo2</td>
<td>..._th_W18-T5-L4</td>
<td>qbcg</td>
<td>08:02:40</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11989.sapelo2</td>
<td>matlabjob</td>
<td>zhyw86</td>
<td>0</td>
<td>C</td>
<td>batch</td>
</tr>
<tr>
<td>11990.sapelo2</td>
<td>..._1_constoptTS</td>
<td>sm39091</td>
<td>445:42:1</td>
<td>R</td>
<td>wheeler_q</td>
</tr>
<tr>
<td>11991.sapelo2</td>
<td>..._1_constoptTS</td>
<td>sm39091</td>
<td>444:51:4</td>
<td>R</td>
<td>wheeler_q</td>
</tr>
<tr>
<td>11992.sapelo2</td>
<td>..._cl_W18-T3-D1</td>
<td>qbcg</td>
<td>03:04:21</td>
<td>C</td>
<td>batch</td>
</tr>
</tbody>
</table>

Note: qstat command will give you a long list of all jobs from all users on cluster!
Workflow Diagram

1. Linux/Mac user:
   ssh MyID@sapelo1.gacrc.uga.edu

Windows user:

5. Linux/Mac user:
   scp file MyID@xfer.gacrc.uga.edu:/lustre1/MyID/workDir

Windows user:

2. cd /lustre1/MyID

3. mkdir ./workDir

4. cd ./workDir

6. nano ./sub.sh

#PBS -/bin/bash
#PBS -q batch
#PBS -N bowtie2_test
#PBS -l nodes=1:ppn=1
#PBS -l mem=2gb
#PBS -l walltime=1:00:00
#PBS -M zhuofei@uga.edu
#PBS -m ae
cd $PBS_O_WORKDIR
module load Bowtie2/2.3.3-foss-2016b

7. $ qsub sub.sh

8. $ qstat me or qdel JobID
Work on Sapelo2 - GACRC Wiki

Main Page: http://wiki.gacrc.uga.edu

Running Jobs: https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2

Software: https://wiki.gacrc.uga.edu/wiki/Software

Transfer File: https://wiki.gacrc.uga.edu/wiki/Transferring_Files

Linux Command: https://wiki.gacrc.uga.edu/wiki/Command_List

Training: https://wiki.gacrc.uga.edu/wiki/Training

User Account Request: https://wiki.gacrc.uga.edu/wiki/User_Accounts

Support: https://wiki.gacrc.uga.edu/wiki/Getting_Help
Get Help

➢ **Job Troubleshooting:**

Please tell us details of your question or problem, including but not limited to:

- ✓ Your user name
- ✓ Your job ID
- ✓ Your working directory
- ✓ The queue name and command you used to submit the job

➢ **Software Installation:**

- ✓ Specific name and version of the software
- ✓ Download website
- ✓ Supporting package information if have

Please note to make sure the correctness of datasets being used by your jobs!
Request Support

* indicates Required fields.

Your Name *
John smith

MyID *
jsmith

E-mail *
jsmith@uga.edu

Phone Number
411-555-1212

Brief Description
my job can not be started

Request Details *

Cluster
☑ zcluster ☐ sapelo ☑ sapelo2 ☐ other

* For questions on cluster or software, please include the command/script used, working path and working nodes (interactive / queue name) if applicable.
* For software installation, please specify software name, version and include link to the software if applicable.
* Please review your message on the next page and then click the Submit button.
Appendix: Examples of Batch Serial/Threaded/MPI Job Scripts

- Components you need to run a job:
  - Software already installed (cluster software or the one installed by yourself)
  - Job submission script to
    1. specify computing resources:
       - number of nodes and cores
       - amount of memory
       - maximum wallclock time
    2. load software using `ml load` (for cluster software)
    3. run any Linux commands you want to run, e.g., `pwd`, `mkdir`, `cd`, `echo`, etc.
    4. run the software
       - Input data for analysis, if have

- Common queueing commands you need:
  - `qsub`, `qstat_me`, `qstat`, `qdel`
  - `qstat -f`, `showq`
Example 1: Serial job script running NCBI Blast+ using 1 CPU

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=1
#PBS -l mem=20gb
#PBS -l walltime=48:00:00

cd $PBS_O_WORKDIR

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

time blastn [options] ...
```

- Linux default shell (bash)
- Queue name (batch)
- Job name (testBlast)
- Number of nodes (1), number of cores (1), node feature is NOT needed!
- Maximum amount of RAM memory (20 GB) is enforced by the cluster!
- Maximum wall-clock time (48 hours) for the job, default 6 minutes
- Compute node will use the directory from which the job is submitted as the working directory, i.e., /lustre1/MyID/workDir
- Load the module of ncbiblast+, version 2.6.0
- Run blastn with ‘time’ command to measure the amount of time it takes to run the application

https://wiki.gacrc.uga.edu/wiki/BLAST%2B-Sapelo2
Example 2: Threaded job script running NCBI Blast+ using 4 CPUs

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=4
#PBS -l mem=20gb
#PBS -l walltime=480:00:00
#PBS -M jsmith@uga.edu
#PBS -m ae
#PBS -j oe

cd $PBS_O_WORKDIR

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

time blastn -num_threads 4 [options] ...
```

- Number of nodes (1), number of cores (4)
  \[\text{Number of cores requested (4)} = \text{Number of threads (4)}\]

- Email address to receive a notification for computing resources
- Send email notification when job aborts (a) or terminates (e)
- Standard error file (testBlast.e12345) will be merged into standard out file (testBlast.o12345)

- Run blastn with 4 threads (-num_threads 4)
Example 3: MPI job script running RAxML using 2 full nodes

```bash
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testRAxML
#PBS -l nodes=2:ppn=28
#PBS -l walltime=120:00:00
#PBS -l mem=100gb

```bash
cd $PBS_O_WORKDIR

```bash
ml load RAxML/8.2.11-foss-2016b-mpi-avx

```bash
mpirun --np 50 raxmlHPC-MPI-AVX [options]
```

- Number of nodes (2), number of cores (28)
 Total cores requested = 2 x 28 = 56
 We suggest, Number of MPI Processes (50) ≤ Number of cores requested (56)
- To run raxmlHPC-MPI-AVX, MPI version using OpenMPI
- Run raxmlHPC-MPI-AVX with 50 MPI processes (–np 50), default 56
Guideline Tips

• Do NOT use Login node to run CPU/memory intensive jobs directly ➔ submit jobs to queue!
• Do NOT use Login Node to upload/download large data to/from cluster ➔ use Transfer node!
• Do NOT use home dir for storing large job data ➔ use global scratch /lustre1/MyID
• Do NOT park data on global or local scratch ➔ clean up when job finished or exits from node
• NO large memory job running on batch or jlm_q ➔ use highmem_q
• NO small memory job running on highmem_q ➔ use batch or jlm_q
• As a general rule, threads # = cores # requested
Practical Tips

• Each directory should not have too many files inside! A rule of thumb would be to try to keep no more than a few tens of thousands of files (<10000 would be even better) in any single directory which is accessed frequently.

All files are in ONE single dir! ☠️

Files are organized in subdirs! ✔️
Thank You!