
Introduction to Linux Basics

Part II

Georgia Advanced Computing Resource Center

University of Georgia

Suchitra Pakala

pakala@uga.edu

1

mailto:pakala@uga.edu

2
Variables in Shell

Shell Arithmetic

 I/O and Redirection

 Redirecting output, more, less, cat

Piping, Sorting, Pattern Matching, Searching

Decision making

 If condition

 Loops

For loop

While loop

HOW DOES LINUX WORK?

3 Variables in Shell

 In Linux (Shell), there are two types of variable:

 System variables: Created and maintained by Linux itself, this type of variable defined in

CAPITAL LETTERS.

 User defined variables (UDV) : Created and maintained by user, this type of variable defined

in lower letters.

System Variable Meaning

BASH=/bin/bash shell name

BASH_VERSION=1.14.7(1) shell version name

COLUMNS=80 No. of columns for our screen

HOME=/home/pakala home directory

OSTYPE=Linux Operating System type

PATH=/usr/bin:/sbin:/bin:/usr/sbin path settings

PWD=/home/students/Common current working directory

SHELL=/bin/bash shell name

USERNAME=pakala User name who is currently login to this PC

4
How to define User defined variables (UDV)

 Syntax: variable name=value

 'value' is assigned to given 'variable name'

 Value must be on right side = sign

 Examples:

$ 10=no # this is NOT Fine

value must be on right side of = sign

$ n=10 #to define variable n having value 10

$ no=10 # this is fine

$ vech=Bus #to define variable vech having value Bus

5 Rules for Naming variable name

 Don't put spaces on either side of the equal sign when assigning value to variable

 Example: the following variable declaration there will be no error

 But there will be problem for any of the following variable declaration:

 Variables are case-sensitive

$ no=10 # No error

$ no =10 $ no= 10 $ no = 10

$ no=10 #will print 10

$ No=11 #will print 11

$ NO=20 #to print value 20,we need to use $echo $NO

 You can define “NULL” variable

 Do not use ?,* etc, to name your variable names

$ vech=

$ vech=“” #nothing will be shown as variable has no value

6

 echo command is used to display text or value of variable.

 echo [options] [string, variables...]

 Options:

-n Do not output the trailing new line.

-e Enable interpretation of the following backslash escaped characters in the

strings:

\a alert (bell)

\b backspace

\c suppress trailing new line

\n new line

\r carriage return

\t horizontal tab

\\ backslash

echo Command

$ echo –e “An apple a day keeps away \a\tdoctor\n”

7 How to print or access value of UDV (User defined variables)

 To print or access UDV:

 Syntax: $variablename

$ fruit=mango

$ n=25

$ echo $fruit

$ echo $n

Shell Arithmetic

 To perform arithmetic operations.

 Syntax: expr op1 math-operator op2

$ expr 1 + 3

$ expr 2 - 1

$ expr 10 / 2

$ expr 20 % 3

$ echo `expr 6 + 3`

8

Quotes Name Meaning

" Double Quotes
"Double Quotes" - Anything enclosed in double quotes

removed meaning of that characters (except \ and $).

' Single quotes
'Single quotes' - Enclosed in single quotes remains

unchanged.

` Back quote
`Back quote` - To execute command

$ echo “Today is date” #cannot print message with today’s date

$ echo “Today is `date`” # will print today’s date

More about Quotes

 There are three types of quotes:

9

$ FRUIT=apples

$ echo ‘I like $FRUIT’ # $ is disabled by ‘ ’

$ I like $FRUIT

$ echo “I like $FRUIT” # $ is not disabled by “ ”

$ I like apples

$ echo “I like \$FRUIT” # $ is disabled forcedly by preceding \

$ I like $FRUIT

$ echo ‘`pwd`’ # ` is disabled by ‘ ’

$ `pwd`

$ echo “`pwd`” # ` is not disabled by “ ”

$ /home/gacrc-instruction/pakala

 Quoting Examples

10 The read Statement

 Syntax: read variable1, variable2,...variableN

$ nano hello.sh

#!/bin/bash

script to read your name from keyboard

#

echo “ please enter your name:”

read name

echo “ Hello $name, Lets be friends! ”

$ chmod 755 hello.sh

$./hello.sh

$ please enter your name:suchi

$ Hello suchi, Lets be friends!

11

Wild card Meaning Examples

*
Matches any string or

group of characters.

$ ls * Lists all files

$ ls a*
Lists all files whose first name is starting

with letter 'a'

$ ls *.c Lists all files having extension .c

$ ls ut*.c
Lists files having extension .c but file

name must begin with 'ut'.

?
Matches any single

character.

$ ls ?
Lists all files whose names are 1

character long

$ ls fo?

Lists all files whose names are 3

character long and file name begin

with fo

[...]

Matches any one of

the enclosed

characters

$ ls [abc]* Lists all files beginning with letters a,b,c

Wild cards

12 I/O AND REDIRECTION

 Programs and commands can contain both inputs and outputs

 Input and outputs of a program are called "streams " in Linux

 There are three types of streams

 STDIN: "standard input"-- by default, input from the keyboard

 STDOUT: "standard output"--by default, output sent to the screen

 STDERR: "standard error"--by default, error output sent to the screen

 Output Redirection

$ ls > my_file

 To redirect all directory content to output_file:

$ ls >> my_file

 Redirection of this sort will create the named file if it doesn't exist, or else overwrite the

named file if it does exist already. You can append the output file instead of rewriting it

using a double ">>"

13 I/O AND REDIRECTION

 Input Redirection

 Input can also be given to a command from a file instead of typing it to the screen like this:

$ samplefile 2> error_file

$ samplefile < file1

 Error Redirection

$ samplefile > output_file 2>&1

 When performing normal redirection, STDERR will not be redirected

 Many bash programmers find it useful to redirect only STDERR to a separate file

 If the program produces a lot of output, to make it easier to find the errors which are

thrown from your program. Using the bash shell, this can be accomplished with "2>"

 In addition one may merge STDERR to STDOUT with 2>&1

14 Redirecting output, cat , more, less

 list command and > to redirect your output to a file named mylist

$ ls -l /etc > mylist

$ cat mylist

$ more mylist

$ less mylist

 There are three methods for viewing a file from the command prompt:

cat, more and less

 cat shows the contents of the entire file at the terminal, and scrolls automatically

 more shows the contents of the file, pausing when it fills the screen.

 Use the spacebar to advance one page at a time

 less also shows the contents of the file, pausing when it fills the screen.

 Use the spacebar to advance one page at a time, or use the arrow keys to scroll one

line at a time (q to quit).

 "g" and "G" will take you to the beginning and end, respectively

15

$ ls | more #output of ls command is given as input to more command

$ who | sort #output of who command is given as input to sort command which will

print sorted list of user’s

$ who | sort > user_list # out of sort is redirected to user_list file

$ who | wc –l #prints number of users who logon to system

$ who | grep suchi #print if particular user name, if logon or nothing is

printed

 A pipe is a way to connect the output of one program to the input of another

program without any temporary file

 Using the pipe operator "|" you can link commands together.

 The pipe will link the standard output from one command to the

standard input of another

 Syntax: command1 | command2

Piping

16

 The Linux sort command sorts the content of a file or any STDIN, and prints the sorted list

to the screen

$ cat temp.txt

cherry

apple

x-ray

clock

orange

bananna

Sorting

$ sort temp.txt

apple

bananna

cherry

clock

orange

x-ray

$ sort -r temp.txt

x-ray

orange

clock

cherry

bananna

apple

 To see sorted list in reverse

order, use the -r option

17 Pattern Matching

 grep is another useful search utility

 It searches the named input file for lines that match the given pattern and prints

those matching lines

 In the following example, search for instances of the word “World" in the file

“sample1”

 If there are no matches, grep will not print anything to the screen

$ cat sample1

Welcome to the Linux World.

Linux is free and open source

Software.

$ grep World sample1

Welcome to the Linux World.

18 Searching

 Finding files on the system and finding a particular text string within a file are very useful.

 searching in /usr/lib, looking for files named libmenu.so, and whenever it finds one, prints its

full path

 The find command is useful for finding where missing libraries are located, so the path may be

added to the LD_LIBRARY_PATH environment variable

$ find /usr/lib -name libmenu.so -print

 grep command searches for patterns and prints matching lines

 Here, it looks for "score" in the file lincoln.txt

$ grep score lincoln.txt

$ ps -ef | grep csh

 In following example, grep searches input from ps -ef (which outputs all processes in full

format), and prints out a list of csh users

19
 More commands on one command line:

 Syntax:command1;command2

$ pwd ; ls

$ cd .. ; ls

$ date ; who

 Tilde Expansion (Home Expansion): ~

$ cd ~username # home directory associated username

$ cd ~ # replaced by $HOME

$ cd ~/ # same as above

 Command Substitution: `command` (` is back quota!)

$ cd `pwd` # same as cd /home/gacrc-instruction/pakala

20 Decision Making

 bc - Linux calculator program.

Expression Meaning to us Your Answer BC's Response

5 > 12 Is 5 greater than 12 NO 0

5 == 10 Is 5 is equal to 10 NO 0

5 != 2 Is 5 is NOT equal to 2 YES 1

5 == 5 Is 5 is equal to 5 YES 1

1 < 2 Is 1 is less than 2 Yes 1

 In bc, relational expression always returns true (1) or false (0 - zero).

http://www.freeos.com/guides/lsst/ch03sec01.html#whatexpressionis

21

if condition

 if condition which is used for decision making in shell script

 If given condition is true then command1 is executed.

 Syntax:

if condition

then

command1 if condition is true or if exit status of condition is 0(zero)

fi

#!/bin/bash

#

#Script to print file

#

if cat $1

then

echo -e "\nFile $1, found and successfully echoed"
fi

$ nano sampledata.sh

$ chmod 755 sampledata.sh

$./sampledata.sh sample

Hello!!!!!

Welcome to Linux world....

File sample, found and successfully

echoed

 Shell script name is sampledata.sh($0)

 sample (which is $1) is a file

 If sample file exists, it will print sample files content to the screen.

Test Command

#!/bin/bash

#

Script to see whether argument is positive

#

if test $1 -gt 0

then

echo "$1 number is positive"

fi

22

 test command or [expr] is used to see if an expression is true, and if it is true it returns

zero(0), otherwise returns nonzero for false.

 Syntax: test expression OR [expression]

$ chmod 755 test.sh

$./test.sh 5

5 number is positive

$./test.sh -25

Nothing is printed

Flow Control

Test Expression Description

-e file True if file exists

-d or -f file True if file exists and is a directory or a regular file

-r or -w or -x file True if file exists and is readable or writable or executable

-s file True if file exists and has a nonzero size

file1 -nt or -ot file2 True if file1 is newer or older than file2

-z or -n string True if the length of string is zero or nonzero

str1 == str2 True if the strings are equal

str1 != str2 True if the strings are not equal

arg1 OP arg2 OP is one of –eq, -ne, -lt, -le, -gt, or -ge. Arg1 and arg2 may be +/-

integers

! expr True if expr is false

expr1 -a expr2 True if both expr1 AND expr2 are true

expr1 -o expr2 True if either expr1 OR expr2 is true

File testing

String testing

Logical testing

ARITH testing

23

Loops

 for Loop:

for i in 1 2 3 4 5

do

echo "Welcome $i times"

done

24

 Syntax:

for { variable name } in { list }
do execute one for each item in the list until the list is finished
done

 Example:

$ chmod 755 forloop.sh

$./forloop.sh

welcome 1 times

welcome 2 times

welcome 3 times

welcome 4 times

welcome 5 times

While Loop:

$ chmod 755 whileloop.sh

$./whileloop.sh 9

9 * 1 = 9

9 * 2 = 18

9 * 3 = 27

9 * 4 = 36

9 * 5 = 45

9 * 6 = 54

9 * 7 = 63

9 * 8 = 72

9 * 9 = 81
9 * 10 = 90

25
 Syntax:

while [condition]
do

command1
command2
--

done

#!/bin/bash

#Script to test while statement

if [$# -eq 0]

then

echo "Error - Number missing from command

line argument“

echo “syntax : $0 number”

echo " Use to print multiplication table for given

number"

exit 1

fi

n=$1

i=1

while [$i -le 10]

do

echo "$n * $i = `expr $i * $n`"

i=`expr $i + 1`
done

Bash Profile

 Why we have those automatically set shell variables?

Configure your working environment on Linux as you wish!

 Example: .bash_profile for interactive login shell

if [-f ~/.bashrc]; then # if .bashrc exists and is a regular file, then

. ~/.bashrc # run/source it in current shell to

fi # make interactive login and non-login shell

to have the same environment

User specific environment and startup programs

PATH=$PATH:$HOME/bin

export PATH

26

27

#!/bin/bash

if no vehicle name is given

i.e. -z $1 is defined and it is NULL

if no command line argument

if [-z $1]

then

rental="*** Unknown vehicle ***"

elif [-n $1]

then

otherwise make first argument as rental

rental=$1

fi

case $rental in

"car") echo "For $rental $45 per day”;;

"van") echo "For $rental $85 per day";;

"jeep") echo "For $rental $55 per day";;

*) echo "Sorry, I can not get a $rental for you";;

esac

Shell Scripting Examples:

Shell Scripting Examples

 Serial job submission script (zcluster):

 Batch Threaded job submission script (zcluster):

#!/bin/bash

cd /escratch4/pakala/pakala_Nov_13

export PATH=/usr/local/fastqc/latest:${PATH}

fastqc SRR1369670.fastq -o Output_File

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_zcluster

#!/bin/bash

cd /escratch4/pakala/pakala_Nov_13

time /usr/local/ncbiblast/latest/bin/blastall -p 2 [options]

28

https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_zcluster

29
ls –> directory listing

cd –> change directory

pwd –> show current directory

mkdir dir –> create a directory dir

rm file –> delete file

cp file1 file2 –> copy file1 to file2

mv file1 file2 –> rename or move file1 to file2

ln -s file link –> create symbolic link link to file

touch file –> create or update file

cat > file –> places standard input into file

more file –> output the contents of file

head file –> output the first 10 lines of file

tail file –> output the last 10 lines of file

file –> to determine a file's type

grep pattern files –> search for pattern in files

ps –> display your currently active processes

top –> display all running processes

kill pid –> kill process id pid

chmod –> change the permissions of file

● 4 – read (r) ● 2 – write (w) ● 1 – execute (x)

Linux Command Reference

30

Thank You

