
Linux Training
for New Users of Cluster

Georgia Advanced Computing Resource Center

University of Georgia

Suchitra Pakala

pakala@uga.edu
1

mailto:pakala@uga.edu

Overview

➢GACRC

➢ Linux Operating System

➢ Shell, Filesystem, and Common Commands

➢ Scripting and execution

2

Georgia Advanced Computing Resource Center

Who Are We:

➢ Georgia Advanced Computing Resource Center (GACRC)

➢Collaboration between the Office of Vice President for Research (OVPR) and
the Office of the Vice President for Information Technology (OVPIT)

➢Guided by a faculty advisory committee (GACRC-AC)

Why Are We Here?

➢To provide computing hardware and network infrastructure in support of
high-performance computing (HPC) at UGA

Where Are We?

➢http://gacrc.uga.edu (Web)

➢http://wiki.gacrc.uga.edu (Wiki)

➢ http://gacrc.uga.edu/help/ (Web Help)

➢ https://wiki.gacrc.uga.edu/wiki/Getting_Help (Wiki Help)
3

http://gacrc.uga.edu/
http://wiki.gacrc.uga.edu/
http://gacrc.uga.edu/help/
https://wiki.gacrc.uga.edu/wiki/Getting_Help

➢ Introduction to Linux

➢ Connecting to a Linux machine

4

Linux Operating System

➢ Operating System (OS)
➢ Software program
➢ Enables hardware to communicate and operate with software
➢ Manages all resources and applications

➢ Memory, File system, Networking, I/O, etc.
➢ Browser, Video player, etc.

➢Most popular Operating Systems : Mac, Linux, Windows.

5

Linux Operating System

➢ About Linux OS
➢ Developed in 1991 by Linus Torvalds
➢ Open Source
➢ Multi-user, Multi-tasking operating system
➢ Most popular OS in the high performance computing community
➢ Several distributions - Ubuntu, CentOS, Fedora, RedHat, etc.

➢Why use Linux?
➢ Free, Stable, Secure, Portable, Scalable

6

Linux Operating System
➢ Two major components of Linux:

➢ Kernel
➢ Core of the OS
➢ Schedules processes, and interfaces with hardware
➢ Manages resources – memory, I/O, etc

➢ Shell
➢ The shell is an interface between users and the kernel
➢ Command-line – Users can type commands
➢ Command interpreter – runs commands
➢ Programming environment – for scripting

7

Linux Shell
➢ “Shell” - command line interpreter
➢ Interacts between the system and users
➢ Reads commands from the keyboard
➢ Executes commands
➢ Displays the output

➢ Provides the “environment”
➢ Command-line completion
➢ Auto-correction
➢ TAB key - Auto-completion
➢ Up and down arrow keys - command history

➢ Several shells available
➢ Bash-shell (bash) is the default one.

8

Connecting to Shell - on Mac/Linux

➢ Open a terminal and type: ssh <UGAMyID>@sapelo2.gacrc.uga.edu

➢ Enter your Password when prompted

➢ Note: The password entry will not show on the screen. Not even asterisks.

9

10

1. Open the SSH Secure Shell and click on

"Quick connect".

2. Hostname: sapelo2.gacrc.uga.edu

3. User Name: your UGA MyID

➢ Port Number: 22

➢ Authentication Method: Select <Profile Settings>

4. Enter above information and click “Connect”

➢ Enter your password in the next pop up

window and click “OK”

Connecting to Shell – on Windows
➢ Download SSH Secure Shell from http://eits.uga.edu/hardware_and_software/software/

1

2
3

4

http://eits.uga.edu/hardware_and_software/software/

11

Connecting to Shell – on Windows

Select Duo Login

global scratch directory

home directory

➢ Linux Directory Structure

➢ Navigation Commands

12

13

Understanding Linux Directory
Structure

➢ ‘upside down tree’

➢ Root directory (“/” forward slash)

➢ Organized inside root directory

➢ Create directories inside - sub directories.

➢ Unique name in its containing directory

Relative Path vs Absolute Path

14

➢ Relative path
➢ Path to a file, relative to current location (present working directory)

$ ls /home/pakala/Blast/

AF293 Escherichia_Coli_LF82.fasta

blast.sh GCF_000002655.1_genomic.fna

$ pwd

/home/pakala/

$ ls

Suchi_Scripts Blast

$ ls Blast

AF293 Escherichia_Coli_LF82.fasta

blast.sh GCF_000002655.1_genomic.fna

Absolute path

Relative Path

➢Absolute or Full path
➢ Path to a file, beginning at the root

Present working directory

Change Directory (cd)

15

➢cd :change your current working directory

pakala@uga-2f0f976:~ $ cd /usr/bin Move to bin subdir of usr dir

pakala@uga-2f0f976:~ $ cd .. Move up one directory

pakala@uga-2f0f976:~ $ cd Returns to home directory

pakala@uga-2f0f976:~ $ cd ~pakala Returns to home directory/pakala

pakala@uga-2f0f976:~ $ cd $HOME Environment Variable/home dir

➢pwd :present working directory

pakala@uga-2f0f976:~ $ pwd

/home/pakala

List Directory (ls)

16

➢ ls
➢ lists files and directories that exist in the current location

➢ Note: we cannot differentiate between files and directories

pakala@uga-2f0f976:~ $ ls

e_coli_data.fq hello.sh sample_script sub.sh Suchi_Scripts

pakala@uga-2f0f976:~ $ ls -l

total 584496

-rw-r--r-- 1 pakala abclab 1610499990 Mar 6 09:46 e_coli_data.fq

-rwxr----- 1 pakala abclab 136 Feb 21 15:22 sample_script

-rw-r--r-- 1 pakala abclab 284 Mar 6 09:50 sub.sh

drwxr-xr-x 2 pakala abclab 2 Feb 22 12:07 Suchi_Scripts

➢ ls –l
➢ shows file permissions, owner of file, group, file size, modified date and time,
and differentiates between file or directory name.

List Directory (ls)

17

➢ ls -a
➢Lists hidden files. They start with ‘.‘
➢These are files containing profiles and other settings that should not be

altered unless necessary, and hence are “hidden”

pakala@uga-2f0f976:~ $ ls -a

. .bash_history.n609 .emacs .mozilla

.. .bash_history.sapelo2-sub1 .emacs.d .oracle_jre_usage

.bash_history .bash_history.sapelo2-sub2 .felix sample_script

.bash_history.n201 .bash_logout .fontconfig .ssh

.bash_history.n204 .bash_profile .gnome2 sub.sh

.bash_history.n206 .bashrc hello.sh Suchi_Scripts

.bash_history.n210 .beast .java .swp

.bash_history.n227 .cache .ldaprc .viminfo

.bash_history.n233 .config .lmod.d

.bash_history.n234 e_coli_data.fq .matlab

pakala@uga-2f0f976:~ $ ls –lS

total 584496

-rw-r--r-- 1 pakala gclab 1610499990 Mar 6 09:46 e_coli_data.fq

-rw-r--r-- 1 pakala gclab 284 Mar 6 09:50 sub.sh

-rwxr----- 1 pakala gclab 136 Feb 21 15:22 sample_script

drwxr-xr-x 2 pakala gclab 2 Feb 22 12:07 Suchi_Scripts

➢ls -lh
➢ shows sizes in human readable format

➢ls -lS
➢Displays file size in order

18

pakala@uga-2f0f976:~ $ ls -lh

total 571M

-rw-r--r-- 1 pakala gclab 1.5G Mar 6 09:46 e_coli_data.fq

-rwxr----- 1 pakala gclab 136 Feb 21 15:22 sample_script

-rw-r--r-- 1 pakala gclab 284 Mar 6 09:50 sub.sh

drwxr-xr-x 2 pakala gclab 2 Feb 22 12:07 Suchi_Scripts

List Directory (ls)

➢ Files

➢ Permissions

➢ Creation, Deletion, Copy and Move
Commands

19

Files And Processes
➢ File
➢ Collection of data
➢ Location of a file – Path
➢ Can be created using text editors (nano, vi, etc)

➢ Process
➢Any program that is run
➢Unique process identifier - PID
➢ For example: “ps” command which lists all processes

20

pakala@uga-2f0f976:~ $ ps

PID TTY TIME CMD

21505 pts/225 00:00:00 bash

24908 pts/225 00:00:00 ps

21

Files And File Names
➢ File
➢ Basic unit of storage for data
➢ May contain any characters
➢ File names are always case sensitive
➢ You should avoid spaces, quotes, and parenthesis
➢ File names can be long, up to 255 characters

➢ Directory
➢ Special type of file
➢ Holds information about other files
➢ Present working directory (pwd)

pakala@uga-2f0f976:~ $ pwd

/home/pakala

File Permissions

22

➢Multi-user environment
➢File permissions are used to protect users and system files.
➢The types of permissions a file can have are:

Read Permissions Write Permissions Execute Permissions

r w x

➢Files and directories have three levels of permissions:
➢ User
➢ Group
➢ World

User (owner) Group Others (everyone else)

rwx rwx rwx

File Permissions

23

-rwxr-xr-x 1 pakala gclab 284k Feb 22 12:07 hello.sh

File Type: - Regular file(d for Directory)

User has read,
write, and execute
permissions on this file

Group and world have
read and execute
permissions

User

Group File size Date modified File name

of hard links

Changing File Permissions

24

➢chmod command to change permissions of a file.
➢ Symbolic mode:
➢ Syntax: chmod [references][operator][modes]
➢ References – “u” for user, “g” for group, “o” others
➢ “a” for all three types
➢ The operator – “+” to add and “-” to remove

>> Default settings when file was created:

pakala@uga-2f0f976:~ $ ls -l

-rw-r--r-- 1 pakala gclab 24 Feb 15 10:35 sample_script

>> Adding x(excute) permission for the user:

$ chmod u+x sample_script

-rwxr--r-- 1 pakala gclab 24 Feb 15 10:45 sample_script

>> Removing r(read) permission for others:

$ chmod o-r sample_script

-rwxr----- 1 pakala gclab 24 Feb 15 10:50 sample_script

Creating and Editing Files

25

➢ Creating and editing files using a text editor
➢ The most widely used editors available on sapelo are vim, nano, etc

Version Number Program Name

ctrl + x to save file and exit

$ nano hello.sh

Creating and Deleting Directories

26

➢ mkdir creates a directory

$ mkdir testdir

$ mkdir –p <dirname>/<subdirname>

➢ Creating directories and subdirectories in one step

➢ Removing Files
$ rm –i <filename> Interactive Mode

➢ Remove directories

$ rm –ri <directoryname> Interactive Mode

➢ rmdir removes an empty directory
$ rmdir testdir

Remove Files (rm)

27

➢ rm removes files

$rm –i /home/pakala/sample_script

option description

Remove (unlink) the FILE(s)

rm –f ignore nonexistent files, never prompt

rm -i prompt before every removal

rm -r, -R remove directories and their contents recursively

rm -v explain what is being done

➢ Other options:

➢ With the -r or -R option
➢ Removes entire directories recursively and permanently!!!

➢ rm -r * option
➢ Removes all of the files and subdirectories (not recommended)

➢ To remove an empty directory, use rmdir

Copy Files (cp)

28

➢ cp copies files or directories.
➢To copy a file from /home/pakala/sample_script to /home/pakala/Suchi_Scripts

option description

cp -a archive files

cp -f force copy by removing the destination file if needed

cp -i interactive - ask before overwrite

cp -n no file overwrite

cp -R recursive copy (including hidden files)

cp -u update - copy when source is newer than destination

cp -v verbose - print informative messages

$ cp –i /home/pakala/sample_script /home/pakala/Suchi_Scripts

➢Other Options:

Move Files (mv)

29

➢ mv moves a file to another location.
➢ For example, to move a file from /lustre1/pakala/AF293.fs to /lustre1/pakala/Sample_Data

$ mv –i AF293.fs /lustre1/pakala/Sample_Data

$ mv myFile myFileNew

➢ Can also be used to rename a file in the same directory.
➢ For example, to rename myFile to myFileNew:

➢Other options:
option description

mv -f force move by overwriting destination file without prompt

mv -i interactive prompt before overwrite

mv -u update - move when source is newer than destination

mv -v verbose - print source and destination files

man mv help manual

Summary of Common Linux Commands
➢ cd : Change your current working directory

➢ pwd : Print absolute path of your current working directory

➢ ls : List the files that exist in the current directory

➢ mv : Moves a file to another location.

➢ cp : Copies files or directories

➢ mkdir : Create a directory

➢ rmdir : Delete an empty directory

➢ rm –r : Delete a nonempty directory and its contents
30

More Linux Commands
➢ file <filename> : Display file type of file with name

➢ cat textfile : Throws content of text file on the screen

➢ more <filename> : Output the contents of a file

➢ less <filename> : Output the contents of a file

➢ man <command> : Read man pages command

➢ dos2unix : convert DOS/Windows file to Linux format

➢ mac2unix: convert mac file to Linux format

➢ exit or logout: leave the session 31

File Viewing

32

➢ file – determine the type of a file

pakala@uga-2f0f976:~ $ file Linux_Scripts/ directory

Linux_Scripts/: directory

pakala@uga-2f0f976:~ $ file e_coli_data.fq ASCII text

e_coli_data.fq: ASCII text

pakala@uga-2f0f976:~ $ file hello.sh Shell Script

hello.sh: Bourne-Again shell script text executable

➢ cat
➢ cat is a standard Linux utility that concatenates
➢ Prints the content of a file to standard output

pakala@uga-2f0f976:~ $ cat temp.txt

Hello!!!!!

Welcome to Linux world!

File Viewing

33

➢ more
➢ view text files - one page at a time, scroll down only
➢ spacebar to scroll down

➢ less
➢ view text files, one page at a time, scroll up and down
➢ space bar to scroll down
➢ key b to scroll up, Key q to quit

pakala@uga-2f0f976:~ $ less testfile

pakala@uga-2f0f976:~ $ more testfile

Manual Pages (man)
➢ Linux includes a built in manual for nearly all commands.
➢ Example: man rm (remove)

34

$ man rm

RM(1) User Commands RM(1)

NAME

rm - remove files or directories

SYNOPSIS

rm [OPTION]... FILE...

DESCRIPTION

This manual page documents the GNU version of rm. rm removes each

specified file. By default, it does not remove directories.

If the -I or --interactive=once option is given, and there are more

than three files or the -r, -R, or --recursive are given, then rm

prompts the user for whether to proceed with the entire operation.

OPTIONS

Remove (unlink) the FILE(s).

-f, --force

ignore nonexistent files, never prompt

-i prompt before every removal

-r, -R, --recursive

remove directories and their contents recursively

35

File Conversion

➢ dos2unix : Convert DOS/Windows file to Linux format
➢ Example: dos2unix file1
➢ Removes DOS/Windows line endings in file1

$ dos2unix file1

$ mac2unix file2

➢ mac2unix : Convert Mac file to Linux format
➢ Example: mac2unix file1
➢ Removes Mac line endings in file1

➢ Script Execution

➢ Shell Scripting

36

Shell Scripting

➢ Shell Script - series of commands written in plain text file

➢ Why to write Shell Script?
➢ To automate tasks that should be run daily
➢ Build “pipelines” of commands and other programs to run
➢ Serve as automatic documentation
➢ Useful to create our own commands
➢ Save lots of time

37

38

Example Script
#!/bin/bash

rsync using variables

SOURCEDIR=/home/pakala/Linux_Scripts

DESTDIR=/lustre1/pakala/backup_files/

rsync -avh $SOURCEDIR $DESTDIR

compressing directory

compress=Linux_Scripts_$(date +%Y%m%d).tar.gz

tar -czf $compress /home/pakala

Simple if/else statement, checking if the directory exists or not

directory="./Suchi_Scripts"

if [-d $directory]; then

echo "Directory exists"

else

echo "Directory does not exist"

fi

39

Variables in Shell
➢ What is a “variable”?
➢ A character string to which we assign a value
➢ Value could be a number, text, filename or any other type of data
➢ Pointer to the actual data

➢ There are two types of variables:
➢ System variables
➢ User defined variables

➢ System variables
➢ Created and maintained by Linux
➢ Defined in CAPITAL LETTERS, user can reset their default values

40

System Variables

System Variable Meaning Example Value

HOME User’s home directory /home/pakala

PATH Path to binaries /usr/bin:/sbin:/bin:/usr/sbin

PWD Current working directory /home/pakala

SHELL Path to default shell /bin/bash

USER User who is currently logged in pakala

TERM Login terminal type of user xterm

LD_LIBRARY_PATH Shared library search path

pakala@uga-2f0f976:~ $ echo $SHELL

/bin/bash

pakala@uga-2f0f976:~ $ echo $HOME

/home/pakala

41

User Defined Variables
➢Created and maintained by user, defined in lower letters
➢Syntax: variable name=value
➢ Rules for naming variable name
➢ Don't put spaces on either side of the equal sign
➢ Variables are case sensitive
➢ Do not use ?,* etc, to name your variable names

➢ To print or access user defined variables
➢ Syntax: $variable name

$ no=10

$ echo $no #will print 10

$ no =25 #no spaces on either side of equal sign

-bash: no: command not found

$ No=11

$ echo $No #case sensitive, will print 11

42

Example Script – breaking it down
#!/bin/bash Location of shell to use

rsync using variables Comment line

SOURCEDIR=/home/pakala/Linux_Scripts

DESTDIR=/lustre1/pakala/backup_files/

rsync -avh $SOURCEDIR $DESTDIR Actual command to run

compressing directory

compress=Linux_Scripts_$(date +%Y%m%d).tar.gz

tar -czf $compress /home/pakala

Simple if/else statement, checking if the directory exists or not

directory="./Suchi_Scripts"

if [-d $directory]; then

echo "Directory exists"

else

echo "Directory does not exists"

fi

43

$ chmod u+x sample_script.sh

$./sample_script.sh

sending incremental file list

created directory /lustre1/pakala/backup_files

Linux_Scripts/

Linux_Scripts/.swp

Linux_Scripts/car.sh

Linux_Scripts/file2

Linux_Scripts/file2.sh

Linux_Scripts/first.sh

Linux_Scripts/forloop.sh

Linux_Scripts/sample

Linux_Scripts/sampledata.sh

Linux_Scripts/samplescript.sh

Linux_Scripts/test1.sh

Linux_Scripts/whileloop.sh

Linux_Scripts/sample1/

sent 14.68K bytes received 229 bytes 29.82K bytes/sec

total size is 13.89K speedup is 0.93

tar: Removing leading `/' from member names

tar: /home/pakala: file changed as we read it

Directory exists

Run Shell Script
Adding execute permission for User

Running the script

.bashrc
➢.bashrc is a shell script that Bash runs whenever it is started interactively.

➢Think about all the startup programs that run when you start Windows

➢ It initializes an interactive shell session. You can put any command in this file that
you would type at the command prompt

➢ A common thing to put in .bashrc are aliases that you want to always be available

44

.bashrc
Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi
User specific aliases and functions
export PATH=/home/pakala/bin:$PATH

alias ls='ls --color=auto -l'
alias p="pwd"

45

THANK YOU ☺

