

# Using Sapelo2 Cluster at the GACRC

New User Training Workshop

Georgia Advanced Computing Resource Center (GACRC)

EITS/University of Georgia

Zhuofei Hou zhuofei@uga.edu



### Outline

- GACRC
- Sapelo2 Cluster
  - Diagram
  - Overview
  - Four Directories
  - Four Computational Queues
  - Software Environment
- Job Submission Workflow
- GACRC Wiki and Support



#### **GACRC**

- We are a high-performance-computing (HPC) center at UGA
- We provide to the UGA research and education community an advanced computing environment:
  - HPC computing and networking infrastructure located at the Boyd Data Center
  - Comprehensive collection of scientific, engineering and business applications
  - Consulting and training services
- http://wiki.gacrc.uga.edu (Wiki)
- https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593 (Support)
- http://gacrc.uga.edu (Web)



#### Sapelo2 Cluster





# Sapelo2: A Linux HPC cluster (64-bit Centos 7)

- > Two Nodes:
  - 1. Login node for batch job workflow: MyID@sapelo2.gacrc.uga.edu
  - 2. Transfer node for data transferring: MyID@xfer.gacrc.uga.edu
- > Four Directories:
  - 1. Home: Landing spot; 100GB quota; Backed-up
  - 2. Global Scratch: High-performance job working space; NO quota; NOT backed-up
  - 3. Local Scratch: Local storage on compute node; 200GB; NOT backed-up
  - 4. Storage: Temporary data parking; 1TB quota; Backed-up (ONLY accessible from Transfer node!)
- Four Computational Queues: batch, highmem\_q, gpu\_q, groupBuyin\_q



### Four Directories

| 4 Directories   | Role              | Quota            | Accessible<br>from | Intended Use  Backed- up                                        |     | Notes                                                                                       |
|-----------------|-------------------|------------------|--------------------|-----------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------|
| /home/MyID      | Home              | 100GB            | Login              | Static data: 1. Scripts, source codes 2. Local software         | Yes |                                                                                             |
| /lustre1/MyID   | Global<br>Scratch | No Limit         | Transfer           | Current job data:<br>data being read/written<br>by running jobs | No  | User to clean up! *Subject to deletion in 30 days                                           |
| /project/abclab | Storage           | 1TB<br>(initial) | Transfer           | Temporary data parking: non-current active data                 | Yes | Group sharing possible                                                                      |
| /lscratch       | Local<br>Scratch  | ~200GB           | Compute            | Jobs with heavy disk I/O                                        | No  | <ol> <li>User to clean up when job exits from the node!</li> <li>Persistent data</li> </ol> |



## Accessing Directories from Nodes



INTRODUCTION TO GACRC SAPELO2 CLUSTER





| Queue        | Node<br>Feature | Total<br>Nodes | RAM(GB)<br>/Node | Max RAM(GB)<br>/Single-node Job | Cores<br>/Node | Processor<br>Type       | GPU Cards<br>/Node | InfiniBand |
|--------------|-----------------|----------------|------------------|---------------------------------|----------------|-------------------------|--------------------|------------|
| batch        | Intel           | 30             | 64               | 62                              | 28             | Intel Xeon              | N/A                | Yes        |
|              |                 | 42             | 192              | 188                             | 32             | Intel Xeon<br>(Skylake) |                    |            |
|              | AMD             | 90             | 128              | 125                             | 48             | AMD<br>Opteron          |                    |            |
| highmem_q    | Intel/AMD       | 4/1            | 1024             | 997                             | 28             | Intel Xeon              |                    |            |
|              | AMD/Intel       | 4/1            | 512              | 503                             | 48             | AMD<br>Opteron          |                    |            |
| gpu_q        | GPU             | 2              | 128              | 125                             | 16             | Intel Xeon              | 8 NVIDIA K40       |            |
|              |                 | 2              | 96/80            | 92/76                           | 12             |                         | 7 NVIDIA K20       |            |
|              |                 | 4              | 192              | 188                             | 32             | Intel Xeon<br>(Skylake) | 1 NVDIA P100       |            |
| groupBuyin_q |                 |                |                  | variable                        |                |                         |                    |            |

#### Software Environment

- 1. Software names are long and have a EasyBuild toolchain name associated to it
- 2. Complete module name: Name/Version-toolchain, e.g., Python/2.7.14-foss-2016b
- Software names are case-sensitive!
  - module avail: List all available software modules installed on cluster
  - > module load moduleName: Load a module into your working environment
  - > module list: List modules currently loaded
  - > module unload moduleName: Remove a module from working environment
  - > ml spider pattern: Search module names matching a pattern (case-insensitive)



#### Job Submission Workflow

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2

- 1. Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo: ssh MyID@sapelo2.gacrc.uga.edu
- 2. On Login node, change directory to global scratch : cd /lustre1/MyID
- 3. Create a working subdirectory for a job: mkdir ./workDir
- 4. Change directory to workDir: cd ./workDir
- 5. Transfer data from local computer to <u>workDir</u>: use <u>scp</u> or **SSH File Transfer** to connect Transfer node

  Transfer data on cluster to <u>workDir</u>: log on to Transfer node and then use <u>cp</u> or <u>mv</u>
- 6. Make a job submission script in workDir: nano ./sub.sh
- 7. Submit a job from workDir: qsub ./sub.sh
- 8. Check job status : qstat me or Cancel a job : qdel JobID



### Step1: Log on to Login node - Mac/Linux using ssh

https://wiki.gacrc.uga.edu/wiki/Connecting#Connecting\_to\_Sapelo2

- 1. Open Terminal utility
- 2. Type command line: ssh MyID@sapelo2.gacrc.uga.edu
- 3. You will be prompted for your MyID password
- 4. Sapelo2 access requires ID verification using two-factor authentication with Archpass
  - Duo. If you are not enrolled in Archpass Duo, please refer to

https://eits.uga.edu/access\_and\_security/infosec/tools/archpass\_duo/ on how to enroll



Step1 (Cont.) - Mac/Linux using ssh

# Use Terminal utility on Mac or Linux!







### Step1 (Cont.) - Windows using SSH Secure Utilities

- 1. Download and install SSH Secure Utilities: <a href="http://eits.uga.edu/hardware and software/software/">http://eits.uga.edu/hardware and software/software/</a>
- 2. You can use PuTTY as an alternative: <a href="https://www.putty.org/">https://www.putty.org/</a>







# Step1 (Cont.) - Windows using SSH Secure Utilities







### Step1 (Cont.) - Windows using SSH Secure Utilities







### Step2: On Login node change directory to global scratch

Once you logged on, your current directory will be your <u>home directory</u>

Use cd command to change your current directory to <u>/lustre1/MyID</u>

Use ls command to take a look in /lustre1/MyID

```
zhuofei@sapelo2-sub2 zhuofei$ ls
user_test workDir_Alex workDir_bk
```



### Step3 - 4: Create and cd to a working subdirectory

Use mkdir command to make a subdirectory in /lustre1/MyID

```
zhuofei@sapelo2-sub2 zhuofei$ mkdir workDir
zhuofei@sapelo2-sub2 zhuofei$ ls
user_test workDir workDir_Alex workDir_bk
```

Use cd command to change your current directory to /lustre1/MyID/workDir



# Step5: Transfer data from local computer to workDir - Mac/Linux

https://wiki.gacrc.uga.edu/wiki/Transferring Files

- 1. You need to connect to cluster's <u>Transfer node</u> (xfer.gacrc.uga.edu)
- 2. Open Terminal utility on <u>local computer</u> to use scp (-r) [Source] [Target]

*E.g.* 1: working on local computer, from Local → workDir on cluster

```
scp ./file zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/
scp -r ./folder/ zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/
```

E.g. 2: working on local computer, from workDir on cluster → Local

```
scp zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/file .
scp -r zhuofei@xfer.gacrc.uga.edu:/lustre1/zhuofei/workDir/folder/ .
```



### Step5 (Cont.) - Windows using SSH Secure Utilities

- 1. You need to connect to cluster's <u>Transfer node</u> (xfer.gacrc.uga.edu)
- 2. Use SSH File Transfer on local computer (alternative FileZilla or WinSCP)
- 3. Steps 1-8 are the same as steps on page 14-15, except for Host Name in step 5:

Host Name: xfer.gacrc.uga.edu

- 4. Step 9-10 are not required for logging on Transfer node, as of 2018-09-18
- 5. Once you log on, use File Transfer of SSH Secure Utilities, as shown on next page



### Step5 (Cont.) - Windows using SSH Secure Utilities





### Step5 (Cont.): Transfer data on cluster to workDir

- Log on to Transfer node (xfer.gacrc.uga.edu)
  - ✓ Mac/Linux: ssh MyID@xfer.gacrc.uga.edu (page 12)
  - ✓ Windows: use SSH Secure Utilities (page 19)
- Landing folder: /home/MyID (Home)
- Transfer data between folders on cluster using cp, mv
- Directories you can access using full path:
  - 1. /home/MyID
  - 2. /lustre1/MyID
  - 3. /project/abclab
- Most file systems on Transfer are auto-mounted upon the first time full-path access, e.g.,
   cd /project/abclab/



#### Step6: Make a job submission script in workDir

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#Job submission Scripts

\$ nano sub.sh

nano is a small and friendly text editor on Linux.

Ctrl-x to save file and quit from nano





## Step6 (Cont.)

- 1. Sample script on GACRC Wiki Software page:
  - https://wiki.gacrc.uga.edu/wiki/Bowtie2-Sapelo2 #PBS -1 mem=2gb
- 2. Modify it as needed for your computing

To run this example, you need to copy 3 files into your current working dir:

- cp /usr/local/training/sub.sh .
- cp /usr/local/training/myreads.fq .
- cp -r /usr/local/training/index .





### Step7: Submit a job from workDir using qsub

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to submit a job to the batch queue

```
zhuofei@sapelo2-sub2 workDir$ pwd
/lustre1/zhuofei/workDir
zhuofei@sapelo2-sub2 workDir$ ls
index myreads.fq sub.sh
zhuofei@sapelo2-sub2 workDir$ qsub sub.sh
11943.sapelo2
```

#### sub.sh is job submission script to

- 1. specify computing resources:
- 2. load software using ml load
- 3. run any Linux commands you want to run
- 4. run the software



#### Step8: Check job status using qstat\_me

https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

```
zhuofei@sapelo2-sub2 workDir$ qstat me
                                            Time Use S Queue
Job ID
                  Name
                                  User
11943.sapelo2
                  bowtie2 test
                                  zhuofei
                                            00:06:40 C batch
11944.sapelo2
                  bowtie2 test
                                  zhuofei
                                           00:05:17 R batch
                  bowtie2 test
11946.sapelo2
                                           00:12:51 R batch
                                  zhuofei
11947.sapelo2
                  bowtie2 test
                                  zhuofei
                                                   0 R batch
11948.sapelo2
                  bowtie2 test
                                  zhuofei
                                                   0 0 batch
```

R: job is running

C: job completed (or canceled or crashed) and is not longer running. Jobs stay in this state for 24 hour

Q: job is pending, waiting for resources to become available

Note: "Time Use" is the CPU time, instead of the wall-clock time of your job staying on cluster!



#### Step8 (Cont.): Cancel job using qdel

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to delete a running or pending job

```
zhuofei@sapelo2-sub2 workDir$ qdel 11947
zhuofei@sapelo2-sub2 workDir$ qstat me
Job ID
                   Name
                                   User
                                                Time Use S Queue
11943.sapelo2
                   bowtie2 test
                                    zhuofei
                                                00:06:40 C batch
                                                00:05:17 R batch
11944.sapelo2
                   bowtie2 test
                                    zhuofei
                                                00:12:51 R batch
11946.sapelo2
                   bowtie2 test
                                    zhuofei
                                                00:00:09 C batch
11947.sapelo2
                   bowtie2 test
                                    zhuofei
11948.sapelo2
                   bowtie2 test
                                    zhuofei
                                                       0 Q batch
```

job 11947 status is changed from R to C C status will stay in list for ~24 hour



### Step8 (Cont.): Check Job using qstat -n -u MyID

https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

```
zhuofei@sapelo2-sub2 workDir$ qstat -n -u zhuofei
dispatch.ecompute:
                                                                    Req'd
                                                            Req'd
                                                                               Elap
                                                                    Time
                                                                             S Time
Job ID
      Username
                      Oueue Jobname SessID NDS
                                                            Memory
                                                       TSK
12175.sapelo2 zhuofei batch bowtie2 test 132442 1
                                                                    01:00:00 R 00:23:44
                                                       1 2ab
  n238/0  job is running on node238/CPU0
12176.sapelo2 zhuofei batch bowtie2 test
                                           67226 1 1
                                                            2qb
                                                                    01:00:00 R
                                                                               00:20:44
  n237/0
12177.sapelo2 zhuofei batch bowtie2 test 119643 1
                                                            2qb
                                                                    01:00:00 R
                                                                               00:05:44
Note: "Elap Time" is the wall-clock time, instead of the CPU time, which qstat_me can give you!
```



### Step8 (Cont.): Check all Jobs on cluster using qstat

https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

```
zhuofei@sapelo2-sub2 workDir$ qstat
Job ID
                                                 Time Use S Queue
                      Name
                                    User
11267.sapelo2
                    L80-500 jx57780 164:32:5 R batch
11269.sapelo2
             L80-502 jx57780
                                                 164:55:5 C batch
                    L80-503 jx57780
11270.sapelo2
                                                  165:38:5 C batch
11607.sapelo2
                                     qd98309
                                                  3414:46: R bergman q
                      canu
                ... 3 constoptTS sm39091
11726.sapelo2
                                                  3157:30: R wheeler q
                    ... 2 constoptTS sm39091
11729.sapelo2
                                                  2731:29: R wheeler q
11790.sapelo2
                      sp2 run19b dye castelao
                                                  4412:52: C batch
11804.sapelo2
                      ...e-4 Nnoise=64 cotter 98:26:20 R batch
                                              98:14:22 R batch
11806.sapelo2
                      ...e-4 Nnoise=64 cotter
11987.sapelo2
                      ... th W18-T5-L4 gbcg
                                                  08:02:40 C batch
11989.sapelo2
                      matlabjob
                                     zhyw86
                                                        0 C batch
11990.sapelo2
                       ... 1 constoptTS sm39091
                                                  445:42:1 R wheeler q
                      ... 1 constoptTS sm39091
11991.sapelo2
                                                 444:51:4 R wheeler q
                      ... cl W18-T3-D1 qbcq
11992.sapelo2
                                                  03:04:21 C batch
Note: qstat command will give you a long list of all jobs from all users on cluster!
```



# Workflow Diagram





# GACRC Wiki <a href="http://wiki.gacrc.uga.edu">http://wiki.gacrc.uga.edu</a>

Running Jobs: <a href="https://wiki.gacrc.uga.edu/wiki/Running\_Jobs">https://wiki.gacrc.uga.edu/wiki/Running\_Jobs</a> on <a href="https://wiki.gacrc.uga.edu/wiki/Running\_Jobs">Sapelo2</a>

Monitoring Jobs: <a href="https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2">https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2</a>

Job Submission Queue: <a href="https://wiki.gacrc.uga.edu/wiki/Job Submission Queues">https://wiki.gacrc.uga.edu/wiki/Job Submission Queues</a>

Software: <a href="https://wiki.gacrc.uga.edu/wiki/Software">https://wiki.gacrc.uga.edu/wiki/Software</a>

Transfer File: <a href="https://wiki.gacrc.uga.edu/wiki/Transferring-Files">https://wiki.gacrc.uga.edu/wiki/Transferring-Files</a>

Linux Command: <a href="https://wiki.gacrc.uga.edu/wiki/Command-List">https://wiki.gacrc.uga.edu/wiki/Command-List</a>

Training: <a href="https://wiki.gacrc.uga.edu/wiki/Training">https://wiki.gacrc.uga.edu/wiki/Training</a>

User Account Request: <a href="https://wiki.gacrc.uga.edu/wiki/User">https://wiki.gacrc.uga.edu/wiki/User</a> Accounts



### **GACRC Support**

https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalog?CategoryID=11593

#### Job Troubleshooting:

Please tell us details of your question or problem, including but not limited to:

- ✓ Your user name
- ✓ Your job ID
- ✓ Your working directory
- ✓ The queue name and command you used to submit the job

#### Software Installation:

- ✓ Specific name and version of the software
- ✓ Download website
- ✓ Supporting package information if have

Please note to make sure the correctness of datasets being used by your jobs!

#### **GACRC Service Catalog**

Georgia Advanced Computing Resource Center (GACRC) service catalog

#### Services (11)

#### **Account Creation**

For a research group's PI to request user accounts for group members on the GACRC computing systems.

#### Class Account Creation

For an instructor to request user accounts for students attending a course that will need to use GACRC computing systems.

#### Class Account Modification

For instructors to request changes to be made in previously requested class account.

#### Computing Lab Modification/Deletion

#### General Internal



#### General Support

Report issues and request help with GACRC systems, except for software installation requests and account/lab creation requests.

#### Lab Creation

For a research group's PI to register a computing lab on the GACRC computing systems

#### Modify/Delete Account

For PIs to request changes in or deletion of user accounts on GACRC computing systems.



#### Software Installation/Update

Request software and common application database (e.g. NCBI blast databases) installation and upgrade.

#### My Recent Requests

home directory is not fully provisioned: ss57215

GACRC Sapelo2 New Lab/Use Account Request 2018-11-14\_preTraining

GACRC Sapelo2 Cluster New Lab/Use Account Request 2018-11-05\_preTraining

provision 5 user accounts for ugahelpdesk group

GACRC Sapelo2 New Lab/Use Account Request 2018-10-22\_preTraining

View All Recent Requests >

#### Popular Services

EITS Help Desk Support Request

MyID Account Request

Change Request

02 Restricted VPN Access

Terry Classroom & Meeting Room Support

View All Popular Services >

#### My Recently Visited Services

Modify/Delete Account

Class Account Creation



### Appendix: Examples of Batch Serial/Threaded/MPI Job Scripts

https://wiki.gacrc.uga.edu/wiki/Sample Scripts

- Components you need to run a job:
  - Software already installed (cluster software or the one installed by yourself)
  - Job submission script to
    - 1. specify computing resources:
      - ✓ number of nodes and cores
      - ✓ amount of memory
      - ✓ maximum wallclock time
    - 2. load software using ml load (for cluster software)
    - 3. run any Linux commands you want to run, e.g., pwd, mkdir, cd, echo, etc.
    - 4. run the software
  - > Input data for analysis, if have
- Common queueing commands you need:
  - qsub, qstat\_me, qstat, qdel
  - gstat -f, showq



### Example 1: Serial job script running NCBI Blast+ using 1 CPU

#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -I nodes=1:ppn=1
#PBS -I mem=20gb
#PBS -I walltime=48:00:00

cd \$PBS\_O\_WORKDIR

- → Linux default shell (bash)
- → Queue name (batch)
- → Job name (testBlast)
- → Number of nodes (1), number of cores (1), node feature is NOT needed!
- → Maximum amount of RAM memory (20 GB) is enforced by the cluster!
- → Maximum wall-clock time (48 hours) for the job, default 6 minutes
- → Compute node will use the directory from which the job is submitted as the working directory, i.e., /lustre1/MyID/workDir

ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14

→ Load the module of ncbiblast+, version 2.6.0

time blastn [options] ...

→ Run blastn with 'time' command to measure the amount of time it takes to run the application

https://wiki.gacrc.uga.edu/wiki/BLAST%2B-Sapelo2



# \*Example 2: Threaded job script running NCBI Blast+ using 4 CPUS

```
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testBlast
#PBS -l nodes=1:ppn=4
                                      → Number of nodes (1), number of cores (4)
                                          Number of cores requested (4) = Number of threads (4)
#PBS -I mem=20gb
#PBS -l walltime=480:00:00
#PBS -M jsmith@uga.edu
                                      → Email address to receive a notification for computing resources
                                      → Send email notification when job aborts (a) or terminates (e)
#PBS -m ae
                                      → Standard error file (testBlast.e12345) will be merged into standard
#PBS -i oe
                                         out file (testBlast.o12345)
cd $PBS_O_WORKDIR
ml load BLAST+/2.6.0-foss-2016b-Python-2.7.14
time blastn -num_threads 4 [options] ...
                                           → Run blastn with 4 threads (-num_threads 4)
```



# \*Example 3: MPI job script running RAxML using 2 full nodes

```
#PBS -S /bin/bash
#PBS -q batch
#PBS -N testRAxML
#PBS -l nodes=2:ppn=28
                                → Number of nodes (2), number of cores (28)
#PBS -l walltime=120:00:00
                                   Total cores requested = 2 \times 28 = 56
                                   We suggest, Number of MPI Processes (50) ≤ Number of cores requested (56)
#PBS -I mem=100gb
cd $PBS O WORKDIR
ml load RAxML/8.2.11-foss-2016b-mpi-avx
                                              To run raxmlHPC-MPI-AVX, MPI version using OpenMPI
mpirun –np 50 raxmlHPC-MPI-AVX [options]
                                              → Run raxmlHPC-MPI-AVX with 50 MPI processes (-np 50),
                                                 default 56
```



# Guideline Tips

- Do NOT use Login node to run CPU/memory intensive jobs directly → submit jobs to queue!
- Do NOT use Login Node to upload/download large data to/from cluster → use Transfer node!
- Do NOT use home dir for storing large job data → use global scratch /lustre1/MyID
- Do NOT park data on global or local scratch → clean up when job finished or exits from node
- NO large memory job running on batch or jlm\_q → use highmem\_q
- NO small memory job running on highmem\_q → use batch or jlm\_q
- As a general rule, threads # = cores # requested



## **Practical Tips**

Each directory should not have too many files inside! A rule of thumb would
be to try to keep no more than a few tens of thousands of files (<10000 would
be even better) in any single directory which is accessed frequently</li>







All files are in ONE single dir!



Files are organized in subdirs!





# Thank You!

#### **Telephone Support**

EITS Help Desk: 706-542-3106

Monday – Thursday: 7:30 a.m. – 7:30 p.m.

Friday: 7:30 a.m. – 6 p.m.

Saturday – Sunday: 1 p.m. – 7 p.m.

Georgia Advanced Computing Resource Center

101-108 Computing Services building

University of Georgia

Athens, GA 30602

https://gacrc.uga.edu/