XALT Design and Installation Manual

version 0.5
Mark Fahey

Robert McLay

Kapil Agrawal

* much of sections 1 and 2 are taken from the HUST14 paper.

Abstract
XALT Introduction

XALT Design
Description of XALT

Requirements
Key Assumptions

Wrappers

Portability aspects

Database
Installation

Prerequisites

Unpacking
Decisions to be made first

Installation
[Optional] Install Lmod
Lmod installation
Install XALT

SETUP next steps

Testing
Other Transmission methods:
syslog
direct to database
Installation Considerations
Intercepting linkers and job launchers:

Env Var BlackList
Creating the Reverse Map
Examples
Known issues:
Appendix A - Alternative Technologies
References

Abstract

This work improves our understanding of individual users’ software needs, then leverages that
understanding to help stakeholders conduct business in a more efficient, effective, and
systematic way. The product, XALT, builds on work that is already improving the user
experience and enhancing support programs for thousands of users on twelve
supercomputers across the United States and Europe. XALT is designed to track linkage and
execution information for applications that are compiled and executed, respectively, on High
Performance Computing (HPC) systems. In addition, XALT will compare the runtime
environment (at execution) against the compile time environment (from linkage information)
and provide users with information to resolve any runtime inconsistencies if appropriate. It will
highlight the products our researchers need and do not need, and alert users and support
staff to the root causes of software configuration issues as soon as the problems occur. A key
objective of this work is generating the information needed to improve efficiency and
effectiveness for an extensive community of stakeholders including users, sponsoring
institutions, support organizations, and development teams. Efficiency, effectiveness, and
responsible stewardship each require a clear picture of users’ needs. XALT is an important
step in the quest to achieve that clarity.

XALT Introduction

The world of computation is a challenging one: tight budgets, high demand, oversubscribed
resources, increasing scope, and growing complexity. Given these realities, how can we
make the most effective use of limited computing cycles and labor hours? During its five-year
operational lifetime at the Texas Advanced Computing Center (TACC), the decommissioned
Ranger supercomputer ran 2.69 million jobs and delivered more than two billion CPU-hours to
4,000 users from 359 institutions. It supported the computational needs of 2,244 separate
open science research projects representing every imaginable research discipline from the
hard sciences to humanities [1]. Statistics from other leadership-class systems paint a similar
picture. To accommodate such scope and breadth, the largest supercomputers host a rich
catalog of applications and libraries in a variety of configurations. The recently
decommissioned Kraken Cray XT5 at the National Institute for Computational Sciences
(NICS), for example, hosted more than 150 system-level applications and libraries [2]. Many
would operate properly only with a particular choice of compiler, a specific Message Passing
Interface (MPI) communications library, and other essential settings in the user’s working
environment (as is the case in other supercomputing environments.)

The associated costs and risks are significant, but so are the opportunities:
e Building, maintaining, and supporting a large software stack is a labor intensive
endeavor requiring skilled practitioners. Is this time and money well spent? Do we

know how often research teams use each software product? XALT allows
administrators and other support staff to consider demand when prioritizing what to
install, support, and maintain.

e Itis not unusual for users and consultants to consume long hours diagnosing an error
caused by attempting to run an experiment with improperly configured software. Such
problems derail scientific progress, and are particularly common among users
transitioning to high end computing resources for the first time. XALT will flag jobs that
require the attention of support staff, deliver alerts to users regarding the fundamental
causes of problems preventing their jobs from running, and collect metrics that
improve training, documentation, and outreach programs.

e Datasets, dashboards, and historical reports generated by XALT and the systems with
which it interoperates will preserve institutional knowledge and lessons learned so that
users, developers, and support staff do not have to reinvent the wheel when issues
arise that have already been encountered.

In the executive summary of its final report, the NSF Task Force on Software for Science and
Engineering, Advisory Committee for CyberInfrastructure, stated that there are no “generally
accepted quantitative metrics for determining what software researchers most heavily use”
[3]. The statement is one important observation about a larger issue. Our systems are
complex in size and scope; we must manage them in a systematic way. The methodologies
and tools for doing so, however, are still in their infancy.

On another front, the Yale report on the topic of “reproducible computational research”
suggested “scientists make all details of the published computations (code and data)
conveniently available to others” [4]. Much of what they suggest is highly commendable and
more importantly very achievable. Complete documentation from the source code to
versioning to programming and runtime environments to publishing of data would allow other
researchers to reproduce everything about the researcher’s code and how it was built.
Hardware and some parts of the software environment are outside the researchers control
especially when running at a remote computing center, but rebuilding an application code with
the exact same software and version could be accomplished with a chance for “very similar”
results with only round-off error differences.

Computing centers can help researchers in a way that only they can fill. Computing centers at
both the university and national level can provide an automatic way to collect the information
on the versions of software used by the researcher. For example, NICS and TACC provide
two similar but slightly different prototypes (ALTD [5] and Lariat [6], respectively) that capture
the libraries and their versions used by each researcher for each code they build and run.
This solves part of the documentation problem stated above; for example, NERSC uses ALTD
[7] so that users can find out this provenance data from old builds with a simple database
query, allowing researchers to build their codes exactly like they did months or years before.
Our new effort XALT is under development to combine and extend the ALTD and Lariat
infrastructures to capture even more information - basically almost everything mentioned

above. Collecting this information is relatively straightforward (as shown by the prototypes)
and has been proven to be very effective. It would help the researchers greatly with providing
the information the Yale report [4] recommends.

Lastly, there is also a security benefit from tracking all the software used by researchers. For
example, by tracking the shared libraries required at link time and then again at run time, a
center can track the use of these shared libraries by their user community and detect when
changes have occurred over time that might point to performance differences or a hacked
SSL library.

In summary, the data mining performed by XALT will help provide a detailed and accurate
survey of the usage of software installed by vendors, staff, and users. By tracking software
usage, user support quality and efficiency can be improved. Also, this can help build a
community around analytics regarding software needs, trends, and issues at the level of the
individual job. Every center should be doing this for a variety of reasons from better user
support to provenance data collection to security related concerns.

This paper is organized as follows. Section Il provides an overview on XALT, highlighting the
requirements and the design of the project. Section Il describes the methodology and
implementation. Section IV presents results from early data mining efforts and summarizes
expected analyses that will be performed. Section V presents related work done in this
direction and how these works are insufficient for the goals of XALT. Section VI provides an
insight on future work that will be carried on XALT. Lastly section VIl provides a summary of
XALT and its abilities.

XALT Design

XALT will collect accurate, detailed, and continuous job-level and link-time data and store that
data in a database; all the data collection is transparent to the users. The data stored will be
mined to generate a picture of the compilers, libraries, and other software that users need to
run their jobs successfully, highlighting the products that our researchers do and do not need.
XALT will compare the run time environment (at execution) against the compile time
environment (obtained from linkage information) and alert users and support staff to the root
causes of software configuration issues as soon as they occur. XALT will help mitigate the
difficulties new users encounter and identify opportunities to improve documentation,
education and outreach programs.

Description of XALT

XALT is designed to track linkage and execution information for applications that are compiled
and executed on any Linux cluster, workstation, or high-end supercomputer. In addition, XALT
will monitor and track individual code executions, which would in turn help get attention of

support staff and/or deliver alerts to users regarding the basic causes of problems preventing
their jobs from running, and collect metrics that improve training, documentation, and
outreach programs.

Our approach is based on wrappers that intercept both the GNU linker (Id) to get linkage
information and the code launcher (like mpirun, aprun or ibrun) when the code is executed.
For the initial release of the project a handful of architectures are targeted, though
subsequent releases will include support for additional architectures (these may require
supporting additional linkers and code launchers). Wrapping the linker and the code launcher
is a clean and efficient way to intercept information automatically and transparently, as nearly
every user will invoke the linker (Id) at compile time and launch the code through the code
launcher (aprun, mpirun, ibrun).

XALT will track static, shared and dynamically linked libraries. XALT will not only track
libraries linked into an application, but it will also (in a subsequent release) detect function
calls that need to be resolved by external libraries. User defined functions and auxiliary
functions in the external libraries will not be tracked. XALT will not track all function calls
because that is not likely to increase the understanding of library usage.

XALT tracks libraries linked into an application and also detects function calls resolved by
external libraries. User defined function calls are not stored, and any auxiliary functions in the
external libraries are not stored. By storing compile time libraries, at runtime an application’s
runtime environment can be compared against the compile time environment and information
can be provided to the user about what may need to be done, if anything, to fix runtime
issues.

Our routine wrapper for the linker (Id) intercepts the user link line and parses the command
line to capture the link line, which is then stored in a json file in a user’s XALT directory. At the
same time an ELF section header is included in the user’s code, which is a marker that will be
used to record any subsequent usage of this specific executable. As a secondary measure,
we intercept the code launcher (aprun, mpirun, ibrun) at execution time via a wrapper. The
script extracts some job-specific environment variables from the batch system, such as job id
(PBS_JOBID in the case of PBS). It also detects dynamic libraries loaded during the runtime
and stores this information in another json file. These json files (i.e. the files created each time
a code is compiled and executed) is then later stored in a database by running a script. The
data then be mined to provide reports, which can improve our understanding of library usage
and many operations related questions can be answered. The motive behind storing the
information in the json file is to limit the number of times the database is accessed. Accessing
the database in real time may be of concern to centers, since thousands of users could be
accessing the database at the same time. The process of reading the json files and storing
the results in the database will be automated and scheduled during non-peak hours so that
there is no adverse impact on the user experience. The implementation and alternatives are
described in the next section.

Please see Appendix A for a more detailed discussion of alternative technologies.

Requirements
The XALT requirements and design goals include:

Avoid impacting the user experience: A primary design goal was that no matter what
the XALT wrapper does (work or fail), it must not change the way users compile, link,
and run their applications. This requirement is the overriding principle underlying the
design of the XALT infrastructure. We do note that XALT actually links its own object
file into the user executable and that alteration of the link line can in rare cases may
require changes in the way the user links or launches code.

Must work seamlessly on any cluster, workstation or high-end computer: With different
stakeholders showing their interest in improving infrastructure, and doing research in a
more effective, efficient and systematic way. We want XALT to be a practical and
usable solution working on any cluster, workstation or high-end computer.

Must support both static and dynamic libraries: XALT tracks libraries linked during the
linking process, and detects both static and dynamic libraries. At runtime, XALT
detects dynamic libraries that are loaded during the execution phase — in this way one
can determine if an executable uses different versions of dynamic libraries over the
course of its lifetime.

Lightweight solution: One of the primary objective was to develop XALT as a
lightweight solution with essentially no overhead at compilation and runtime.

Alert users and support staff of software configuration issues: It is our goal to identify
jobs that require support staff's attention; along with this it should deliver alerts to
users regarding the fundamental causes of problem preventing jobs from running.
XALT will not only guide support staff in maintaining and supporting a large software
stack but will also reduce long hours spend in diagnosing errors of individual users and
consultants.

Key Assumptions

In the design of XALT, a few assumptions were made that may or may not apply at other
centers. These assumptions are now summarized:

More than one linker and/or job launcher to intercept: It is often the case that clusters
have many MPI installations (MPICH2, MVAPICHZ2, etc.) with multiple versions. Each
such installation is likely to have its own launcher (e.g. mpirun). To be a viable solution
on any cluster, we must be able to intercept each code launcher. If a site has more
than one code launcher (apart from aprun, mpirun, ibrun), then wrappers for each
might need to be provided. In this case the site staff can decide how they want to
intercept them. This is discussed in more detail in the upcoming section.

Not everything on the original link line should be captured: we only need libraries that
are actually linked into the application: Often libraries are specified on the original link

line that are not actually linked into the application. The product must exclude anything
that is not actually linked to the executable.

Track function calls: Function calls that need to be resolved by external libraries will be
tracked. User defined function calls, and any auxiliary functions in the external libraries
will not be tracked. It is assumed that only the calls needing to be resolved by external
libraries worth tracking, and that all the remaining functions and procedures would be
of little interest.

Track library versions if possible: XALT may or may not be able to track version
information; much depends on how libraries are installed and managed at a given site.
For example, NICS and TACC use module files to provide environment variables with
paths to libraries and applications with version numbers embedded in the paths. This
might make easy to extract version information directly from the path. However, this
will be site specific.

Wrappers

Linker

The linker (Id) wrapper intercepts the user link line. Since in many cases more libraries are
included on the link line than are actually used, we go through a four-step process to identify
the libraries that are actually linked into the executable while at the same time including an
ELF section header in the user’s code. Below is the high-level representation of the steps:

Generate assembly code: During this phase, the linker (Id) wrapper calls a python
script to generate assembly code that is stored in the section header of the user’s
executable. The assembly code contains nine fields — XALT version (XALT_Version),
build system host name (Build.Syshost), compiler (Build.Compiler; this data is
collected from passing the PSTREE to the script and extracting the compiler
information), OS (Build.OS), User (Build.User), a universally unique identifier
associated with each build (Build.UUID), year (Build.Year), date (Build.Date) and
epoch (Build.Epoch). These fields are necessary to accurately track the executable in
the jobs table back to the correct machine, user who compiled it, and machine on
which it was built. Figure 1 is an example of the assembly code. The details are written
to an ‘xalt.o’ file in a user-level ‘tmp’ directory.

.section .xalt
.asciz "XALT_Link_Info"

.byte 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

.asciz "<XALT_Version>%%%%"

.asciz "<Build.Syshost>%%darter%%"

.asciz "<Build.compiler>%%driver.cc%%"
.asciz"<Build.0S>%%Linux_%_%_3.0.101-0.29-default%%"

.asciz "<Build.User>%%kagrawa1%%"

.asciz "<Build.UUID>%%bd97b98b-2169-416e-85c1-762be8846dd2% %"
.asciz "<Build.Year>%%2014%%"

.asciz

.asciz "<Build.Epoch>%%1406914621.1%%"

.byte 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

.asciz "XALT_Link_Info_End"

Figure 1: XALT assembly code

e Generate link text: In this phase we use the tracemap output from the real linker and
write all the libraries that were linked to the executable and the xalt.o file (containing
the assembly code) into one text file (link.text), which will be later parsed to exclude
some specific libraries which are of less interest.

e Generate link data: The main aim of this step is to refine the information collected in
the above two steps. The linker (Id) wrapper calls a python script which parses the link
text, removing all redundant information such as lines consisting of tokens like “’ or
lines storing temporary object paths (/tmp/ccT33qQt.0). Once done all the relevant
information is then dumped in one .json file in the user’s ‘~/.xalt.d’ directory.

e Transmit collected data in ‘.json’ format: The current release supports three different
methods to get the data into the database. By default, the data is transmitted to the a
Jjson file in the user home directory, and then later asynchronously update the XALT
database (e.g. daily or weekly as configured at the site) rather than hitting the
database frequently with potential performance effects. However, as a portability
feature, we provide alternate methods to get the data into the database; this is
discussed in more details in the Portability aspects section.

Code Launcher

Launching a parallel job on compute nodes is often done via a batch system (like PBS, Slurm,
or LoadLeveler) through a parallel job launcher such as aprun, mpirun, mpiexec, or ibrun.
These job launchers are intercepted to provide a measure of application usage and a
secondary measure of “library usage.” XALT tracks both start and end time as well as parallel
launcher options and environment variables that will prove invaluable in both debugging and
job analytics to understand good/bad behavior. Below is the high-level representation of the
steps:

e Find executable: Each job launcher wrapper (like aprun, mpirun, or ibrun) has its own
python script to find executable, we need this so as to extract the information stored in
the ELF section during the link time (by linker wrapper). This section in future will help
us relate to the information collected by linker wrapper at compile time.

e Get actual launcher and command line option: Here we get information regarding
actual launcher and its options (not all options); this would in turn be called once we
are done with our wrapper.

e Collect link time, job, and shared libraries information and dump it to a file: The
command objdump is run on the executable to extract link time information as stated
earlier, along with this job information like unique run ID, start date/time, end date/time,
et al. Additionally, the Idd command is run to extract information regarding shared
libraries required by the executable at run time. All this information is dumped into a
‘.json’ file in the user’s ‘~/.xalt.d’ directory.

e Upload .json file to XALT database: This is the same process described at the end of
the section above on the Linker wrapper.

Portability aspects

One of the main objectives of this project was to design an infrastructure that works on any
cluster, workstation or high-end supercomputer. There is a strong possibility that there is more
than one linker and/or job launcher to support even at one site. For the initial release of the
project we have targeted several architectures, and in subsequent releases we will include
support for additional architectures as time permits and/or the community shares them. New
architectures may require supporting additional linkers and code launchers.

In the alpha release, as described previously, we elected to dump ‘.json’ files in the home
directories of each user, which would then later be mined and processed by another utility.
This design is portable yet may not be the desired choice for all sites. This process can be
changed to meet an individual’s site’s requirements; discussed below are the three methods
that will be provided in a subsequent release of XALT:

e Using Files: This is the default for XALT - all information is dumped into ‘.json’ files
(one each for compile time and runtime), then a script parses these files and uploads
the data to the XALT database.

e Using SYSLOG: Some sites may see storing these files in a user’s home directory as
a security issue. Instead, we can write captured data directly in SYSLOG (though this
requires breaking the data into parts because of size constraints) and subsequently
retrieved by a script/job which can consolidate the data and write it into the XALT
database.

e Direct Database Interaction: This feature is similar to what ALTD offers in that all the
linkage and execution information is directly inserted into the XALT database in real
time when a user compiles or executes a code.

Database

The XALT database has several tables. Since there are several many-to-many relationships,
we have designed the database with “join” tables that reduce storing redundant information.
We have four core tables — XALT _ENV_NAME, XALT RUN, XALT OBJECT, and
XALT_LINK. When a linker builds a program (or shared library), a single entry is added to the
XALT_LINK table. This table contains information about the program such as the builder, a
time stamp, and what program linked it. There will be multiple object files and libraries that

constitute the built program. Each of these is stored by XALT_OBJECT. There is only one
entry in the XALT_OBJECT for each object path that has the same sha1sum [8]. The join
table named JOIN_LINK_OBJECT connects the XALT_LINK entry to the object files that
belong to the program.

When a program is executed via a launcher, we create a single entry in the XALT_RUN. We
take the shared libraries that belong to that executable and place them into the
XALT_OBJECT table and connect to the XALT_RUN entry via the JOIN_RUN_OBJECT join
table. We also record the Environment variables in the XALT_ENV_NAME table and use the
JOIN_RUN_ENYV table to connect the values of the variable to the name and the program
execution.

Figure 2 shows basic layout of XALT database. All the information is interlaced with the help
of uuid. A universally unique identifier (uuid) is generated when an executable is compiled.
This identifier (uuid) is placed with the generated assembly code in section header of the
users executable. At run time, the code launcher wrapper parses the executable to get the
section header details including the uuid which provides a way to link the run time entry with
the corresponding entry in the link table.

It is fair to ask why we store the shared libraries twice, once at link time and another at run
item. The reason is to track changes in versions of shared libraries automatically used by a
program over time. When a program is built, it links with the libraries that exist at the current
time. In the future, there may be a newer shared library that is used instead. We wish to
track that.

Installation

This section describes the installation of XALT. Installation is a partly automatic and partly
manual process at this time described below.

~ JOIN_joB_ENV | PK | env.id

PK jom—,'d I UN | env_name
env_jd

run_id «

env_value — -~

run_id
job_id
run_uuid
date
syshost
uuid
hash_id
account
__JOIN_JOB_OBJECT _| exec_type
PK | join_id start_time
run i end_time
obj:i:: run_time
num_cores
num_nodes
num_threads
queue
user
exec_path
module_name
cwd

| PK | ODbj_id
object_path
syshost
hash_id
_ module_name
PK | join_id timestamp
obj_id < lib_type

link_id

| XATUNK |
ey PK | link_id
UN | uuid
hash_id
date
link_program
build_user
build_syshost
build_epoch
exit_code
exec_path

Prerequisites

There are a few prerequisites for running XALT:
For clients:
e Python v2.6 or later
e Python MySQLDb Module

For servers:
e MySQL with proper ip ranges opened for client machines

Unpacking

Choose an installation directory like /usr/local/xalt or /sw/xalt and untar xalt.tar into this
installation directory. From now on, this directory is referred to as XALT_DIR. As shown in
Figure 1, the library XALT is composed of several directories:

Decisions to be made first

There are several decisions to be made about how a site wants to install XALT. First, if a site
has multiple machines, they have to decide if they want one database (one set of common
tables) to hold all the information for all machines or if they want to have multiple database
(typically one per machine). Both are valid installation options and easily set up in either
case.

One database: If you go with one database, then you may need a script per machine
[samples provided in the distribution] to get the data into the database (depending on
the method you choose),

Multiple databases: In this scenario, a site just has to set up multiple databases (i.e.,
one server with multiple database like xalt-machine1 and xalt-machine2) You will
need a script per machine to get the data into the database unless you are doing
“direct to database.” Note that if you are willing to edit the code directly, you could go
with one database and multiple sets of tables per machine - not supported.

Regardless of the decision above, if your machines have different software installations
(module lists) AND you want the ReverseMap support in XALT, then you will need a [Lmod]
ReverseMap per machine which means having a build of Lmod per machine.

The next step is deciding where a few files are to be located; these files being the database
xalt_db.conf file (mysql database access information) and the reverseMapD directory and
reverseMap file(s). We suggest for simplicity that that go in XALT_DIR/etc, but this is up to
the site to pick the location. It may be that the site wants the xalt_db.conf file somewhere
more hidden/secure. This can be chosen with the configuration option --with-etcDir=ans or

overridden at runtime with XALT_ETC_DIR. Note that you will need to have a
XALT_ETC_DIR directory for each machine.

Subsequently, the site needs to decide on whether they want to support the reverseMap
functionality. The reverseMap is our code word for a file that has a mapping library paths or
executables back to the appropriate modulefile (if it exists). This ability requires the creation
of the module reverseMap, which is a result of running the “spider” utility from the Lmod [9]
module system. One does not have to replace TCL module system with Lmod to get this
functionality, it just needs to be installed

Furthermore, if a site has multiple code launchers or linkers, then the site has to decide how
they want to intercept them. There are a variety of ways this can be accomplished, discussed
below in the section on “Intercepting linkers and job launchers.” One possible way to do this
is with Lmod in conjunction with XALT, but this requires replacing TCL modules with Lmod.

In summary, at this point the site needs to have made several decisions which will help guide
the outline of installations steps next.

Installation

[Optional] Install Lmod

This section starts off with an installation guide for Lmod. Installation is optional, but if you
want support for the reverseMap and/or you want to use Lmod in conjuction with XALT to
intercept the linkers and launchers, then you’ll want to install Lmod. For just reverseMap
support, you do not need to replace TCL module system. To intercept the linkers and
launchers and have XALT always first in the path, you’ll want to replace TCL modules with
Lmod.

Lmod will need to be built for each machine it is to be used on.

Lmod installation

1. Get Lmod-5.8rc2 or greater from...

a. gitclone git@github.com:TACC/Lmod.git or download Lmod-<ver>.tar.gz from github.
Pick a location to install like $SWBASE/Imod
Follow the INSTALL directions that are included with Lmod
Create local config files that users will source
Documentation for Lmod can be found at:
https://www.tacc.utexas.edu/tacc-projects/Imod

aokroen

For step 2, one consideration is whether or not to set up a system cache file. This is very
useful if your system will have lots of modulefiles. You should set up a system cache file if

mailto:git@github.com

your users complain about how long it takes to do “module avail’. This can happen with about
100 to 200 hundred modulefiles especially if they sit on a parallel file system like Lustre. If
you set up a system cache file, then you have to update it every time new software is installed
(e.g., run a cron job.) If you don’t set up the system cache file, then Imod creates a cache file
in the user's home directory, which means every so often the user sees a delay but not every
time. Also, if you create a system cache file, you need to think about the case where you
have multiple systems sharing the same filesystem -- i.e., the cache file cannot be in the
same place. Because Lmod needs to be built for each machine it will be run on, judicious
organization of the installations could make this easy.

For step 2.d, we provide an example “source” file (Imod_startup) that need to be sourced at
login to set up the Lmod module function - this can be done system wide or for just select
users. We also provide a “system_name” script to be configured by the site that will help the
startup script understand local naming conventions. For a testing phase, these files are very
useful, but there are limitations (especially when one shell calls a different shell.)

Install XALT

Although it is possible to install XALT only once for several machines, we suggest installing
XALT once for each machine. This simplifies the installation process and directory
hierarchies.
1. git clone git@github.com:Fahey-McLay/xalt.git or download xalt-<ver>.tar.gz from github. At
least version 0.5.0 or greater.

a. XALT comes with psmisc-22.21 and will install it automatically if your psmisc version
isn’t new enough.

b. If you want to install XALT to work for several machines then you should probably
install psmisc on these machines separately and then make the resulting bin directory
part of the path before installing XALT. Then you can install one and only one XALT
that should work across machines.

i. This will likely require installing psmisc a certain way
<psmiscpath>/builds/<machine>/bin
ii. You may need to install xalt once, go through its manual setup phase and then
go back and build psmisc per machine AND then edit the xalt Id wrapper in the
bin directory so that PSTREE points to the right pstree command per machine
by changing the PSTREE setting to use SSYSHOST ASSUMING that
xalt_syshost.py returns the generic machine name.
2. cdxalt
3. ./configure --prefix=<xaltpath> [--with-etcDir=ans] [--with-transmission=ans]
a. --with-etcDir was described above
b. --with-transmission can be used to pick how you transmit the data collected. By
default [file] the data goes in .json files in the users directory S{USER}/.xalt.d/*. This is

mailto:git@github.com

recommended at first as its the easiest method to debug. One can also choose
directdb or syslog options. These options are described below.
4. make install
a. Theinstall process places all the code launchers bundled with XALT into the bin
directory. You may want to delete the code launchers that are not appropriate for
your system so somebody doesn’t try to use them by accident. For example, | highly
suggest removing the mpirun wrapper from the bin directory on a Cray so that an
inexperienced user doesn’t think mpirun should work on the Cray.
cd bin; rm -f ibrun* mpirun srun
5. Local modifications:
a. site/xalt_syshost.py

i. We assume a site will want to map names like loginl.cheetah, cheetah2 or
service2-cheetah to the same name cheetah. This is done in the
xalt_syshost.py file. This results in records going into the database all having
the same consistent (generic) hostname.

1. Howeuver, it is likely some sites may want the actual hostname where
the link or job launch was executed to be in the database. If so, this
may mean you can’t use the SYSHOST variable in Id to generically
point at the appropriate pstree command (as mentioned above.)

ii. Modify xalt_syshost.py to report the syshost name (darter, titan, ...) for your
systems. It will have to work on login and job launcher nodes (for Crays, might
require “nidxxxxxx” names.) You can modifiy xalt_syshost.py however you
wish, but it needs to only return the desired syshost name.

iii. This is easy to interactively test with “python xalt_syshost.py”.

b. If an existing wrapper [for mpirun,aprun,ibrun] in bin doesn’t exist, then create your
own wrapper or modify an existing one.

i. create the wrapper: usually very simple process by copying an existing
wrapper and making a few changes. One should set NTASKS (typically the -np
option to mpirun) in the wrapper if it is not available as a runtime
environment variable. If not set as environment variable, then we only know
what the number of tasks are via the mpirun command line. Itis up to
xalt_site_pkg.py to use NTASKS or whatever to report the number of tasks to
the XALT database.

ii. create site/xalt_find_exec_YYYY.py in the site directory: copy one of the other
similarly named files and make the necessary changes. This file needs to be
able to understand any arguments provided to the code launcher that are in
the form -option vall [val2 ...]. Any argument that takes one or more values
using space as the delimiter have to be specified in this file. Any arguments
that don’t take values or are specified with -option=vall[:val2] do not need to
be specified here.

c. site/xalt_site_pkg.py may need to be modified by the site to convert system names to
our "standard" convention.

6. Create a module for xalt/0.5.0.lua
prepend_path{"PATH",<xaltpath>/bin, priority=100}
prepend_path{"PYTHONPATH",<xaltpath>/libexec}
prepend_path{"PYTHONPATH" <xaltpath>/site} # to get xalt_site_pkg

or TCL based:
#%Module

proc ModulesHelp { } {
puts stderr "Sets up users' environment to use XALT."
puts stderr "XALT is a User Environment Tracking Infrastructure.\
If you encounter any problems while linking or executing mpirun,\
please unload this module.

conflict totalview

prepend-path PATH <xaltpath>/build/bin 1000
prepend-path PYTHONPATH <xaltpath>/build/libexec
prepend-path PYTHONPATH <xaltpath>/build/site

ALT_LINKER makes XALT work with the Cray compiler/linker
setenv ALT_LINKER /sw/tools/xalt/build/bin/Id

Note that the “prepend-path PATH <xaltpath>/build/bin 1000” statement works with versions of
Tcl Modules 3.2.6 and beyond. This statement causes an error with Tcl Modules 3.1.6.

The “1000” is a priority setting in Lmod. If you are not using Lmod, then you can remove it, but as
noted above recent Tcl Module versions ignore it.

The following is an example layout of the xalt installation not including source directory. This assumes
multiple machines, and installing xalt in the same filesystem. If separate filesystems, then you could
remove a level (machine) or two (machine and “builds”) and just build it for the one machine only and
then replicate the hierarchy on other machines.

xalt
-- builds
-- machinel

*-- reverseMapD

- machine2 -> machine3
- machine3
-- bin
-- libexec
-- psmisc
-- sbin
-- site
-- etc
*-- reverseMapD
-- modulefiles
|-- machinel
|-- machine2 -> machine3
*-- machine3

SETUP next steps

After configuration, the very next thing to do is set up the database.

1. runsbin/conf_create.py to create your own xalt_db.conf file to point to your MySQL server.
This file needs to be put in the XALT_ETC DIR location that was either specified at
configuration(--with-etcDir=ans) or by the environment variable XALT _ETC DIR.

2. Use shin/createDB.py to create the initial db schema.

a. if the schema created previously, then you may just rerun shin/conf_create.py to
recreate the xalt_db.conf file with appropriate settings, but only if the xalt_db.conf
needs to be recreated.

Testing

XALT has multiple ways it can “transmit” the data collected to the database. By default, XALT uses
json files written to the user’s home directory in the ~/.xalt.d/ directory. However, XALT can be set
insert the data into the database directly or it can put the information in syslog.

For now, we assume XALT is set to use the file transmission option via json files.
1. Load the XALT modulefile
module use SXALT_DIR/modulefiles/<machine>
module load xalt
2. Test the linker hijacking.
a. module load xalt; CC -o hello hello.c
b. If this worked there should be a file in the ~/.xalt.d/ called link.darter.....json
3. Submit ajob. If this worked then there should be a ~/.xalt.d/run.darter.....json file.
4. Getting data to DB:

a. If you are generating json files: The script sbin/xalt_file_to_db.py reads the json files
in ~/.xalt.d and loads them into the database. It will delete files with --delete option.

i. Where ever you run this command, it needs to find the xalt_db.conf file.

ii. XALT_USERS: colon separated list of users to find the json file. This can be
used to to target test users instead of all users. If not set, then all users (found
from getent command) directories will be searched and processed. In most
circumstances, this command will need to be run as root.

b. This isn’t called automatically anywhere in XALT as we expect this to be called in a
cron job by a privileged user to put data into the database.

i. The wrappers could be modified to call this function, but then the “direct to
database” option would be better.

Other Transmission methods:

A very important note is that the transmission method can be set at configuration time (defaults to
file), but also can be set at any time later with an environment variable. So a site can first set it up to
use json files, but then can switch to syslog or direct to database at any time. This is done with the
XALT_TRANSMISSION_STYLE environment variable with options of: file, syslog, directdb.

The file transmission method has a big concern from the developers - what happens in the case of
someone running thousands upon thousands of small jobs concurrently on a large machine? This
could generate thousands and thousands of json files in the home directory of that user -- will there
be enough space? enough inodes? too much NFS traffic in general? If this is not a concern at your
site, then the file method should be sufficient

syslog
The syslog method for transmission is very similar to the file method. First the data goes to syslog,
and then asynchronously (via a cron job) the data must be collected and put into the database.

We expect this method to be the best for production use. To use syslog (and in this context we mean
rsyslog since that is all we have tested), you will need to
® set up a configuration file for syslog and place in /etc/rsyslog.d/ that we called
xalt_syslog.conf
SMaxMessageSize 256k
if Sprogramname contains ‘XALT_LOGGING' then /var/log/xalt.log
&~
This example shows that the log file is set up as /var/log/xalt.log. Note that /var is probably
local for the node where the linker or job launcher is run. This is fine, but you will have to run
the syslog parser on each node for this setup. Alternatively, it might be easier if you had say
one node/server where all the log files could be put by syslog and then you would only have
to run the parser on that node, but for each file.

Also note that 64k is the maximum message size as given. We have already hit a case where a
link line was larger than this and this results in the XALT log message being incomplete and as
a result the parser will have to skip those entries as incomplete. We previously used 64k
because all link lines (until this case) were much smaller and all our run examples were larger
but less than 256k.
e modify /etc/rsyslog.conf to use this new configuration
Include all config files in /etc/rsyslog.d/
SincludeConfig /etc/rsyslog.d/*.conf
restart rsyslog
set up rotation on the /var/log/xalt.log log file with a logrotate configuration file like
/etc/logrotate.d> cat xalt
/var/log/xalt.log{
copytruncate
rotate 4
daily
create 0644 root root
missingok
}
The above sets a 4 day rotation on the files. We suggest nothing less than 2. The above
is also setting the log file to be readable by all. This is a site dependent setting - in this
case, a non-root account can be used to parse the data and put it in the database.
e use xalt_syslog_to_db.py to collect data from syslog
python xalt_syslog_to_db.py /var/log/xalt.log.1
We assume the installers know that all of these steps will have to be done on each of the nodes
where the linker and the job launcher (mpirun, aprun, etc) will be run.

direct to database

The direct to database method is probably the simplest. It basically inserts the data into the database
as it is being collected. This is how the ALTD infrastructure worked for years.

This method has the security concerns of “users modify the database directly”. Yes they do, but only
through the wrappers and most if not all users have no idea that is happening. To ameliorate this
concern, it is important to use an “insert-only” account for these transactions. There are also
concerns about many database transactions going on all the time. Anecdotally, this has never been
reported as a problem on several large HPC installations with thousands of users, but it certainly could
be depending on how the database is set up.

To use this method, just set XALT_TRANSMISSION_STYLE to directdb. Really nothing else to do.

TIP: Itis only in directdb mode that users would ever see any issues accessing the database
(whether it be permissions, connectivity, performance.) In the other modes, the data is seemlessly

written and the users never know. If there are any problems, the admins can deal with it
asynchronously without users ever seeing any problems.

Installation Considerations

This section describes considerations when installing XALT. Installation is currently a
semi-automatic process. XALT is written in Python, however there are some additional
packages described previously that require compilation.

The XALT prototype has been installed on CRAY XE/XCs, an SGI Ultraviolet, and several
Intel-based clusters at four different centers: National Institute for Computational Sciences
(NICS) at Oak Ridge National Laboratory (ORNL), Texas Advanced Computing Center
(TACC), Los Alamos National Laboratory (LANL), and the Swiss National Supercomputing
Center (CSCS). The installation process has been fairly straightforward, as intended, and
more architectures will be supported in time.

Intercepting linkers and job launchers:

If a site has multiple code launchers or linkers, then the site has to decide how they want to
intercept them. If they are already wrapped, then our wrappers could be inlined or called by
the existing wrappers. If one is wrapping the linker or code launcher for the first time, there
are several options to consider. If the site has multiple launchers, for example, then there
must be a module system or other mechanism that allows users to swap the version of
launcher. We’'ll assume this is the case for the rest of this discussion and use mpirun as the
example of the parallel code target to be wrapped. There are a variety of options for
wrapping. Each will be discussed in turn.

e Move launcher: One can physically move each launcher out of the way by renaming
it; for example, rename Id and mpirun to Id.x and mpirun.x, respectively and then
actually place the XALT Id and mpirun wrappers in /usr/bin or in the MPI installation
directories. Then the XALT wrapper can replace of the original mpirun. This is not our
suggested option as it requires modifications to our wrapper. If in /usr/bin, then the
modaulefile for each MPI must set some environment variable that the Id and mpirun
wrappers recognize. If, however, the XALT wrappers are placed in each each MPI
installation directory (not recommended), then the wrappers just call “./Id.x” and
“./mpirun.x”. Within the |d and mpirun wrappers, you still need to set the XALT_PATH
properly to where-ever it was unpacked and configured.

e XALT modulefile: Create an XALT modulefile that when loaded puts the launcher first
in the path. An example modulefile is provided with the xalt.tar file. This can be used to
help make XALT part of the default environment. The modulefile modifies the default
user PATH and puts the Id and mpirun wrappers first in the PATH. This requires
addressing an issue: any change to the MPI library by a module swap will not keep the

XALT wrapper first in the path. To address this additional issue, one can take either of
the following approaches:

o Have each MPI modulefile reload the XALT modulefile (or inline the XALT
modulefile contents).

o Use Lmod [9] as the module system which allows one to specify priorities on a
PATH setting. Lmod has the ability to prioritize modules to keep them first in
the path'. Set the XALT PATH priority to ensure that the MPI modulefile swaps
will not be a problem.

Some sites may already have wrapped mpirun (or their job launcher), in this case all
that is needed is to modify the existing wrapper to incorporate or call our launcher. If
you don’t have mpirun wrapped already, we provide several stub mpirun-like scripts
that call.

e Use Aliasing: Aliasing can be used to get in front of the code launchers. Each alias
points to a unique Python script like xalt_alias.py. An analysis of the command line
gives the name of the original command along with some interesting parameters
(name of the compiler, executable or job file, requested number of processors) and
depending on this information the wrapper eventually executes commands to add new
information to the database, modifies the running environment, or patches a job file
before submitting it. The script runs the same command line, this time in an
environment unaware of the aliases.

Env Var BlackList

There is an environment variable blacklist, list of variables discarded, in the
xalt_run_submission.py code. You can add or remove from this list, but note that as long as
this is part of the xalt_run_submission.py code, code updates will overwrite any changes a
site does.

Creating the Reverse Map

The reverse map has been mentioned several times before, but exactly how do you create it.
As described above, Lmod can be used as a module replacement. But even if you don’t want
to replace TCL modules, you can use Lmod to create what we refer to as the reverse map.
Basically, it maps libraries (with paths) back to modulefiles.

If you have your modulefiles set up with a one-to-one to mapping of modules to package
installations, then Lmod can probably create the reverse map without issue. But on some
machines, a module points (with appropriate if tests) can point to a variety of installations and
set environment variables depending on the currently loaded compilers and MPI. In this

' Another way is to put all the XALT modulefile settings inside each MPI modulefile so that as you swap MPI
modules, the XALT wrapper is first in the path.

scenario, the reverse map can be created, but it is a looser reverse map with many-to-one
relationships.

And further on some machines (like Crays), for spider to work, you have to run it multiple
times (one for each Programming Environment) to get multiple reverse maps, which then
have to be combined together for a master reverse map. Below you will see a sample script
for how to do this.

The reverse map needs to be created/updated per machine every time a new modulefile or
package is installed. So it either has to become part of the software installation process, or
run as a cron job every week for example.

And if you have multiple machines and one XALT installation, then you will need to have a
reversemap for each machine. That means as an example the etc directory will likely need to
have subdirectories for each machine and a reverseMapD in each of those directories. And
you will need to set XALT_ETC_DIR in the modulefile for each machine to point to the
appropriate place.

Examples

Simple command to create reverseMap
spider -o jsonReverseMapT $LMOD_MODULEPATH > rmapD/jsonReverseMapT.json

Cray script to create reverseMap

An example script, darter_build_rmapT.sh, for a Cray XC30 that uses Lmod (namely the
spider utility) to create the reverseMap is provided in the contrib/build_reverseMapT _cray/
directory.

#!/bin/bash

T R R R R SR R R i
To get this to work please do the following:
a) Modify the Site Specific Settings to match your site
b) Make sure that this script and the python script
"merge_json_files.py" are in the same directory.
c) Make sure the module command is defined by using $BASH_ENV
or define the module command here.
d) Make sure that LMOD DIR is defined as well
(it is defined by $BASH_ENV).

H oH H ¥ B H H

HAGHR A R R R

Site Specific Setting
HHHHHAHAHHHH AR R

BASE_MODULE_PATH=/opt/modulefiles:/opt/cray/ari/modulefiles:/opt/cray/crayp
e/default/modulefiles:/sw/local/modulefiles:/sw/xc30/modulefiles:/sw/xc30/m
odulefiles:/sw/local/modulefiles:/opt/cray/craype/default/modulefiles:/opt/
cray/modulefiles:/opt/modulefiles:/cm/local/modulefiles:/cm/shared/modulefi
les

ADMIN_DIR=$HOME/XALT/use_xalt
RmapDir=$ADMIN DIR/reverseMapD

nmon

PrgénvA=("PrgEnv-cray" "PrgEnv-gnu" "PrgEnv-intel")

moduleA=("PrgEnv-cray/5.2.25" "PrgEnv-gnu/5.2.25" "PrgEnv-intel/5.2.25")

HHHHHEHFHHHH A
must define the module command and $LMOD_DIR:
HHHHHEHFHHHH A

if [-f "$BASH_ENV"]; then
source $BASH_ENV
fi

#HH#H S R
End Site Specific Setting
#HH#H S R

if [! -d $RmapDir]; then
mkdir -p $RmapDir
fi

SCRIPT_DIR=$(cd $(dirname $(readlink -f "$0")) && pwd)
PATH=$SCRIPT_DIR:$LMOD_DIR:$PATH

cd $RmapDir

module unload "${PrgEnvA[@]}" 2> /dev/null
pPeV:" n
for m in "${moduleA[@]}"; do

sn=$(dirname $m)

v=${mi#*/}

module unload $prev 2> /dev/null

module load $m 2> /dev/null

prev=$m

echo -n '-'

spider --preload -o jsonReverseMapT $BASE_MODULE_PATH >
rmapT_${sn} ${v}.JISON

echo -n '*'

done
echo "*"

OLD=$RmapDir/jsonReverseMapT.old.json
NEW=$RmapDir/jsonReverseMapT.new.json
RESULT=$RmapDir/jsonReverseMapT.json

set -x
merge_json_files.py rmapT_*.JSON > $NEW
if ["$?" =0]; then

chmod 644 $NEW

if [-f $RESULT]; then

cp -p $RESULT $OLD

fi

mv $NEW $RESULT
fi

rm rmapT_*.JSON

Known issues:

An important issue is the interaction of tools like the debugger Totalview with a job launcher:
Totalview needs to interact with the actual job launcher rather than a wrapper. A site can
either unload XALT when Totalview and other similar tools are loaded, or edit the Totalview
wrappers themselves so they interact directly with the renamed job launcher. Either way, the
Totalview runs will not show up in the XALT database.

A Cray specific problem is how the Cray compiler wrapper uses a binutils linker that Cray
bundles with the Cray compiler - this is fairly easy to deal with by setting the Cray
environment variable ALT_LINKER in the XALT modulefile to point to the XALT wrapper.

ALT_LINKER makes XALT work with the Cray compiler/linker
setenv ALT_LINKER XALT_DIR/bin/Id

Appendix A - Alternative Technologies

Except for the prototypes on which XALT is built (ALTD and Lariat), to the best of our
knowledge no tool has been developed for the explicit goal and objectives presented above.
There are a few approaches that are related (some more strongly related than others),
however they were designed for other purposes and as such are not good solutions for what
we have described. In this section we highlight a few of these approaches, including the
ALTD and Lariat prototypes that have led to XALT.

XALT predecessor (ALTD and Lariat): As discussed above, library tracking tools like ALTD
and Lariat are already implemented at the respective sites and have demonstrated clearly
how useful it is to have this infrastructure in place. However having a single infrastructure,
which provides the best of both successful predecessors, is highly desirable. ALTD tracked
static and shared libraries and executables. Lariat only tracked shared libraries and
executables at runtime and checked for runtime issues. XALT incorporates all the above and
adds several more features.

Use of signature matching tools: Signature matching is a common strategy employed by
anti-virus software to search for known patterns of data within the program binaries. Efforts
[21] had been made to extract information (such as compilers and libraries used) using
open-source anti-virus package ClamAV [22]. It comprises of two tools: a signature generator
and a signature scanner. The signature generator takes ELF files and automatically outputs
ClamAV-formatted signatures files. The signature scanner takes as input the signature files
and the executable binaries and outputs all possible match. However, this approach has a few
drawbacks: (1) the ELF file (.comment section) is not a guaranteed source of compiler
provenance information, (2) if different source files are compiled with different compilers, the
resulting program binary will likely lack the compiler-specific code snippets one would need,
(3) this approach takes a ‘noticable’ amount of time to extract signatures (e.g., 28 seconds to
scan through a library of 210 MB size [21]), and (4) one has to be vigiliant to make sure that
all the signatures are up-to-date.

And the fingerprint work by Luca Clementi; the Fingerprint source is at
https://github.com/rocksclusters/FingerPrint. FingerPrint is a software tool which can analyze
arbitrary lists of binaries and save all their dependencies information in a file (called Swirl)
along with other information.

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Frocksclusters%2FFingerPrint&sa=D&sntz=1&usg=AFQjCNGp__yqgrTWv5vf3757cdnNP6RoFQ

To capture the libraries used inside a program is not a trivial task, since not all the libraries
require calling initialization function or adding the header file in the source code. In fact for
example, programs using MPI library (Gropp, Lusk, & Skjellum, 1999) or PETSc library
(Balay, et al., 2008) impose an initialization function (MPI_INIT and Petsclnitialize), while
LAPACK (Anderson, et al., 1999) or NetCFD (Rew, 1990) do not have such functions.

State of the art profiling and tracing tools such as CrayPAT (Cray), Vampir (Solchenbach,
1996), and TAU (Malony, 2006) perform analysis for only one user and provide all the
functions call in the application. These tools could provide similar information as a
by-product, but they are heavy-weight and introduce compile-time and runtime overheads that
should not affect all users all the time.

In the same scope, IPM (Integrated Performance Monitoring) (J. Borrill, 2005) provides a
performance profile on a batch job maintains low overhead by using a unique hashing
approach that allows a fixed memory footprint and minimal CPU usage. However, XALT is
not intended to track all the code execution but rather the libraries used at link time and at the
execution. This avoids any overhead when the user executes his code.

Some commercial or open source distributed resources manager such as TORQUE (Staples,
2006) installed on Kraken, help the administrators to monitor supercomputing systems,
however they can only observe the number of time the softwares have been used or the CPU
hours. This method of extraction of data is called process accounting which records
accounting information for the system resources used, their allocation among users. In Linux,
thanks to environments commands such as lastcomm (Tam, 2001), which prints out
previously executed commands; administrators can parse the output to retrieve summaries on
softwares usage. Nevertheless, both TORQUE and process accounting commands reports
only the applications called in a batch environment and from job scripts respectively; which
results in not taking into accounts libraries or applications called inside a program or a script
while XALT does it.

We can mention the work on TOPAS (Mohr, 1999), a tool that monitors automatically the
usage and performance on the CRAY T3E by modifying the UNISCOS/mk compiler wrapper
script, however, it provides only the performances on the machine from all the user on the
compiler and the MPI library used. We can also cite, in PAPI, there is a function
PAPI_get_shared_lib_info that returns a pointer to a structure containing information about
the shared library used by the program written only in C (Papi).

Use of prelink and other programs: A software tool FingerPrint [24] can analyze arbitrary lists
of libraries and save all their dependency information in a file along with other information that
can be used to understand if a given application can run on another system or if some
dependencies have been modified since file creation. FingerPrint uses prelink (to remove
pre-linking information from libraries and get their hash) and dpkg or rpom (to record package

version and info regarding dependencies). Occasionally prelinking can cause issues with
application checkpoint and restart libraries like blcr [25] or other libraries that uses blcr
internally. In addition, for dynamic tracing FingerPrint uses POSIX ptrace system call which is
hard to implement correctly and consistently.

LD_PRELOAD a dynamic linker is the part of an operating system (OS) that loads and links
the shared libraries for an executable when it is executed. The specific operating system and
executable format determine how the dynamic linker functions and how it is implemented.
Linking is often referred to as a process that is performed at compile time of the executable
while a dynamic linker is in actuality a special loader that loads external shared libraries into a
running process and then binds those shared libraries dynamically to the running process.
The specifics of how a dynamic linker functions is operating system dependent.

The GNU/Linux based operating systems implement a dynamic linker model where a portion
of the executable includes a very simple linker stub which causes the operating system to
load an external library into memory. This linker stub is added at compile time for the target
executable. The linker stub's purpose is to load the real dynamic linker machine code into
memory and start the dynamic linker process by executing that newly loaded dynamic linker
machine code. While the design of the operating system is to have the executable load the
dynamic linker before the target executable's main function is started it however is
implemented differently. The operating system knows the location of the dynamic linker and in
turn loads that in memory during the process creation. Once the executable is loaded into
memory the dynamic linker is already there and linker stub simply executes that code. The
reason for this change is due to the fact that ELF binary format was designed for multiple
Unix-like operating systems and not just the GNU/Linux operating system. On the GNU/Linux
operating system dynamic loaded shared libraries can be identified by the filename's suffix

.SO".

References

[1] https://www.xsede.org/news/-/news/item/6159

[2] M. Fahey, B. Hadri, T. Robinson, W. Renaud., “Software Usage on Cray System
across Three Centers (NICS, ORNL, CSCS)”, Cray Users Group 2012, Stuttgart, Germany.
[3] NSF Advisory Committee for CyberInfrastructure Task Force on Software for Science
and Engineering, http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_Software.pdf

[4] Reproducible Research: Addressing the need for Data and Code sharing in
Computational Science. By the Yale Law School Roundtable,
http://web.stanford.edu/~vcs/Conferences/RoundtableNov212009/RoundtableOutputDeclarati
on.pdf

[5] M. Fahey, N. Jones, B. Hadri, B Hitchcock, Automatic Library Tracking Database,
http://www.nersc.gov/assets/altdmanual.pdf

[6] https://www.tacc.utexas.edu/tacc-projects/Lmod

[7 Automatic Library Tracking Database Infrastructure,
http://www.nersc.gov/users/software/programming-libraries/altd/

[8] http://linux.about.com/library/cmd/blcmdI1_sha1sum.htm

[9] http://sourceforge.net/projects/Imod/

[10] https://www.tacc.utexas.edu/stampede/

[11] Bill Barth, R. Todd Evans, John tacc stats Repository, 2013,
https://github.com/billbarth/tacc_stats.

[12] S. Balay et al., “PETSc Users Manual”, 2008

[13] E. Anderson et al., LAPACK User’s Guide (Third ed.).:SIAM, 1999

[14] R.Rew and G. Davis (1990), NetCDF: an interface for scientific data access, IEEE
Comput. Graph. Appl., 10(4), 7682, doi:10.1109/38.56302.

[15] Cray. Using Cray Performance Analysis Tools,
http://docs.cray.com/books/S-2376-41/S-2376-41.pdf

[16] Wolfgang Nagel. Vampir — Performance Optimization, https://www.vampir.eu/

[17] Sameer Shende and Alan Malony, “TAU: The TAU Parallel Performance System,”
International Journal of High Performance Computing Applications, vol. 20, no.2, pp. 287-311,
2006

[18] J. Carter, L. Oliker, D. Skinner, R. Biswas, J. Borrill, “Integrated Performance
Monitoring of a Cosmology Application on Leading HEC Platforms,” in International
Conference on Parallel Processing: ICPP, 2005

[19] TORQUE-TORQUE resource manager.8, Proceedings of the ACM/IEEE SC2006
Conference on High Performance Networking and Computing, FL, 2006

[20] Albert Tam, Enabling Process Accounting on Linux HOWTO,
http://www.tldp.org/HOWTO/text/Process-Accounting

[21] C.-D. Lu, M. D. Jones, T. R. Furlani, “Automatically Mining Program Build Information
via Signature Matching,” in TeraGrid 11 Workshop, Salt Lake City, UT, 2011.

[22] T. Kojm. http://www.clamav.net.

[23] Bernd Mohr, TOPAS - Automatic Performace Statistics Collection on the CRAY T3E
(1999)

[24] https://github.com/rocksclusters/FingerPrint

[25] http://crd.Ibl.gov/groups-depts/ftg/projects/current-projects/BLCR/

[26] “Joint Institute for Computational Sciences”. http://www.jics.utk.edu.

