

GACRC User Training:

Migrating from Zcluster to Sapelo

The GACRC Staff Version 1.0

Discussion Points

- I. Request Sapelo User Account
- II. Systems
- III. Transfer Files
- IV. Configure Software Environment
- V. Job Submission Workflow
- VI. Job Submission Scripts
- VII. Check Job information and Cancel Job
- VIII. Appendices

Request Sapelo User Account

Sapelo cluster user account: MyID@sapelo1.gacrc.uga.edu

Note: A valid official UGA MyID is a MUST to create a user account!

- The UGA PI uses the GACRC online form <u>http://help.gacrc.uga.edu/userAcct.php</u> to request a user account for a group member.
- 2. Once we received the request, we will verify it with the PI.
- 3. After verification by the PI, the new user will be required to attend a training session.
- 4. After the user attended training, we will provision a Sapelo account for the user.
- 5. A welcome letter is sent to the user once user account is ready.

Systems – Diagram

Accessing Line -

Systems – Overview

Log on to Zcluster Login Node:	'ssh userID@zcluster.rcc.uga.edu' (using zcluster password)			
Open Zcluster Interactive Node:	type 'qlogin' command from login node			
Zcluster Home Directory:	/home/abclab/userID			
Zcluster Global Scratch:	/escratch4/userID (4TB quota)			
Create Working Directory on Zcluster Global Scratch:	type ' <i>make_escratch</i> ' command from login node			
Log on to Sapelo Login Node:	'ssh MyID@sapelo1.gacrc.uga.edu' (using UGA MyID password)			
Open Sapelo Interactive Node:	type 'qlogin' command from login node			
Sapelo Home Directory:	/home/MyID (100GB quota)			
Sapelo Global Scratch:	/lustre1/MyID			
Create Working Directory on Sapelo Global Scratch:	use 'mkdir' command in /lustre1/MyID from interactive node			
Log on to GACRC Transfer Node:	'ssh MyID@xfer.gacrc.uga.edu' (using UGA MyID password)			
Group Project Space:	/project/abclab ("abc" are initials of the PI of the group)			
0/20/2047	ACRC 7 cluster-Sanelo Migrating Training			

Sapelo Cluster Diagram

Systems – Storage Environment

https://wiki.gacrc.uga.edu/wiki/Disk_Storage

Name	Role	Purpose	Zcluster	Sapelo
Home	ssh landing spot	static data, e.g., scripts, software	/home/abclab/userID	/home/MyID (100GB quota)
Global Scratch	Job working space	Current Job data being used by running jobs	/escratch4/userID (4TB quota)	/lustre1/MyID (no quota – limited by capacity)
Project	Active data storage	Non-current active data for future analysis	/project/abclab (1TB initial quota)	

Systems – Computing Resources

https://wiki.gacrc.uga.edu/wiki/Systems

	150x 8-core 16GB RAM nodes with Intel Xeon processors (total 1200 cores) 45x 12-core 48GB RAM nodes with Intel Xeon processors (total 540 cores)
Zcluster	4x 8-core 192GB RAM nodes with Intel Xeon processors (total 32 cores) 10x 12-core 256GB RAM nodes with Intel Xeon processors (total 120 cores) 2x 32-core 512GB RAM nodes with Intel Xeon processors (total 64 cores)
	6x 32-core 64GB RAM nodes with AMD Opteron processors (total 192 cores)
	4x 12-core 96GB RAM nodes with Intel Xeon processors, 8 NVIDIA K20Xm GPU cards each
	112x 48-core 128GB RAM nodes with AMD Opteron processors (total 5376 cores) 4x 48-core 256GB RAM nodes with AMD Opteron processors (total 192 cores)
Sapelo	6x 48-core 512GB RAM nodes with AMD Opteron processors (total 288 cores) 1x 48-core 1TB RAM node with AMD Opteron processors (total 48 cores) 3x 28-core 1TB RAM node with Intel Xeon processors (total 84 cores)
	2x 16-core 128GB RAM nodes with Intel Xeon processors, 8 NVIDIA K40m GPU cards each
	85+ buy-in nodes with variable configurations

Systems – Sapelo Computing Resources

https://wiki.gacrc.uga.edu/wiki/Systems

Total Nodes	Cores /Node	RAM(GB) /Node	Processor Type	Queue Name	Node Feature	NVIDIA GPU	InfiniBand		
112		128							
4	ло	256	AMD Opteron	AMD	AMD		AIVID		
6	40	512		Opteron		N/A			
Δ		1024 (1)		batch	HIGHMEM		Yes		
4	28	1024 (3)							
2	16	128	inter xeon		GPU	16 K40m			
85	variable	variable	variable		abcnode (buy-in)	variable			

Transfer of Files https://wiki.gacrc.uga.edu/wiki/Transferring Files

All Sapelo and zcluster users, as well as all GACRC PIs, can access the GACRC transfer nodes (xfer.gacrc.uga.edu) and using UGA **MyID** and **MyID** password to authenticate.

Note that a user's home directory on transfer node is the same as the user's Sapelo home directory, which is not the same as the user's Zcluster home directory.

Transfer nodes can access the following file systems using their full paths:

Sapelo Home Directory:	cd /home/MyID
Zcluster Home Directory:	cd /panfs/pstor.storage/home/abclab/userID
Zcluster Global Scratch:	cd /escratch4/userID
Sapelo Global Scratch:	cd /lustre1/MyID
Group Project Folder	cd /project/abclab

Detailed instructions can be found at the link above

File Transferring Tree

https://wiki.gacrc.uga.edu/wiki/Transferring_Files

Configure Software Environment https://wiki.gacrc.uga.edu/wiki/Software

Zcluster

User "manually" exports various paths for software packages (in a job submission script or on the command line of an interactive session), for example:

export PATH=.....:\$PATH

Sapelo

User issues module commands to configure various paths for software packages (in a job submission script or on the command line of an interactive session):

- 1. module avail : show all modules available on cluster
- 2. module load moduleName/version : load the needed module "moduleName" with a version
- 3. module list : list all modules you already loaded

For example:

\$ module load python/2.7.8 \$ module load R/3.2.3 \$ module list Currently Loaded Modules: 1) moab/8.1.1 2) StdEnv 3) python/2.7.8 4) R/3.2.3

Job Submission Workflow (general)

	Zcluster		Sapelo
1.	Log on to zcluster login node:	1.	Log on to Sapelo login node:
	ssh userID@zcluster.rcc.uga.edu		ssh MyID@sapelo1.gacrc.uga.edu
2.	Create a working dir on global scratch:	2.	Go to Sapelo Interactive node:
	make_escratch		qlogin
3.	Change to working dir on global scratch:	3.	Change to Sapelo global scratch:
	cd /escratch4/userID/userID_mmm_dd		cd /lustre1/MyID
	(mmm, dd: date abbreviations)	4.	Create a working dir on global scratch:
4.	Create a zcluster job submission script:		mkdir ./workDir
	nano ./sub.sh	5.	Change to working dir on global scratch:
5.	Submit job:		cd ./workDir
	qsub -q rcc-30d ./sub.sh	6.	Create a Sapelo job submission script:
			nano ./sub.sh
		7.	Submit job:
			gsub ./sub.sh

Job Submission Scripts (NCBI Blast as example)

sub.sh on Zcluster	sub.sh on Sapelo
#!/bin/bash	#PBS -S /bin/bash #PBS -a batch
cd `pwd`	#PBS -N testBlast
PATH=/usr/local/ncbiblast/latest/bin:\$PAT	#PBS -I nodes=1:ppn=4:AMD TH #PBS -I mem=20gb
export PATH	#PBS -I walltime=480:00:00
blastall -p blastn -d /db/ncbiblast/latest/n -a 4 -i QUERY \	t \ cd \$PBS_O_WORKDIR
-o out.QUERY	module load ncbiblast+/2.2.26
	blastall -p blastn -d /db/ncbiblast/nrte/latest/nt \ -a 4 -i QUERY \ -o out.QUERY > outputfile 2>&1
qsub -q rcc-30d -pe thread 4 ./sub.sh	qsub ./sub.sh
8/28/2017 GACRC Zcl	uster-Sapelo Migrating Training 14

Sapelo Serial Job Submission Script (NCBI Blast as example)

#PBS -S /bin/bash → Linux shell (bash) **#PBS** -q batch Queue name (batch) Name of the job (testBlast) **#PBS -N testBlast #PBS -I nodes=1:ppn=1:AMD** Number of nodes (1), number of cores/node (1), node type (AMD) Maximum amount of physical memory (20 GB) used by the job *#PBS -I mem=20qb* **#PBS -I walltime=48:00:00** → Maximum wall clock time (48 hours) for the job, default 6 minutes cd \$PBS_O_WORKDIR → Use the dir from which the job is submitted as the working dir module load ncbiblast+/2.2.29 Load the module of ncbiblast+, version 2.2.29 time blastn [options] >outputfile 2>&1 Run blastn with 'time' command to measure the amount of time it takes to run the application

Sapelo Threaded Job Submission Script (NCBI Blast as example)

#PBS -S /bin/bash

#PBS -q batch

- **#PBS -N testBlast**
- #PBS -l nodes=1:ppn=24:AMD #PBS -l mem=20gb #PBS -l walltime=480:00:00

#PBS -M jSmith@uga.edu #PBS -m ae #PBS -j oe

cd \$PBS_O_WORKDIR

module load ncbiblast+/2.2.29

time blastn -num_threads 24 [options] >outputfile 2>&1 \rightarrow Run 24 threads (-num_threads 24)

- Number of nodes (1), number of cores/node (24), node type (AMD) <u>Number of threads (24) = Number of cores requested (24)</u>
- Email address to receive a notification for computing resources
- Send email notification when job aborts (a) or terminates (e)
- Std error file will be merged into stdout file

Sapelo MPI Job Submission Script (RAxML as example)

#PBS -S /bin/bash
#PBS -q batch
#PBS -N testRAxML
#PBS -I nodes=2:ppn=48:AMD
#PBS -I walltime=480:00:00
#PBS -I mem=20gb

→ Number of nodes (2), number of cores/node (48), node type (AMD)
 Total cores requested = 2 × 48 = 96
 Number of MPI Processes ≤ Number of cores requested (96)

cd \$PBS_O_WORKDIR module load raxml/8.1.20 module load intel/15.0.2 module load openmpi/1.8.3/intel/15.0.2

mpirun raxmlHPC-MPI-AVX [options] >outputfile 2>&1

→ Run with default 96 MPI processes

Sapelo MPI Job Submission Script (RAxML as example)

<pre>#PBS -S /bin/bash #PBS -q batch #PBS -N testRAxML #PBS -I nodes=2:ppn=27:AMD → ppn number (27) fewer than 48 MUST be a multiplier of 3! #PBS -I walltime=480:00:00 #PBS -I mem=20g</pre>
cd \$PBS_O_WORKDIR
<pre># Context Sharing CONTEXTS=\$(/usr/local/bin/set_contexts.sh \$PBS_NUM_PPN) if [["\$?" -eq "0"]] ; then export PSM_SHAREDCONTEXTS_MAX=\$CONTEXTS fi</pre> Copied from GACRC Wiki. 4 lines are REQUIRED if you run a MPI job with a ppn number smaller than 48!
module load raxml/8.1.20 module load intel/15.0.2

mpirun –np 50 raxmlHPC-MPI-AVX [options] >outputfile 2>&1 → Run with 50 MPI processes (–np 50), default 54

module load openmpi/1.8.3/intel/15.0.2

Check Job Information (qstat) and Cancel a Job (qdel)

\$ qstat Job ID	Name	User	Time Use	S	Queue
481929.pbs	testJob1	jSmith	900:58:0	C	batch
481931.pbs	testJob2	jSmith	04:00:03	R	batch
481934.pbs	testJob3	jSmith	0	Q	batch

Job status:

R : job is running

C : job completed (or canceled or crashed) and is not longer running. Jobs stay in this state for 1h

Q : job is pending, waiting for resources to become available

\$ qdel 481934 \$ qstat Job ID	Name	User	Time Use S Queue
481929.pbs	testJob1	jSmith	900:58:0 C batch
481931.pbs	testJob2	jSmith	04:00:03 R batch
481934.pbs	testJob3	jSmith	0 C batch

Check Computing Resources Used by a Job

Option 1: qstat -f JobID for running jobs or finished jobs in 1 hour Option 2: showjobs JobID for finished jobs over 1 hour, but ≤ 7 days Option 3: Email notification from finished jobs (completed, canceled, or crashed), if using: #PBS -M MyID@uga.edu

#PBS -m ae

Georgia Advanced Computing Resource Center UNIVERSITY OF GEORGIA

Outputs of qstat -f JobID

```
$ qstat -f 1426778
Job Id: 1426778.pbs.scm
    Job Name = BS2 GFF range methylator5-10.py
    Job Owner = gent@uga-2f0f976.scm
    resources used.cput = 76:54:46
    resources used.energy used = 0
    resources used.mem = 44136kb
   resources used.vmem = 90200kb
   resources used.walltime = 76:50:04
   job state = C
    queue = batch
    Error Path = uga-2f0f976.scm:/home/gent/scripts/BS2 GFF range methylator5-
10.py.e1426778
   exec host = n2/7
    Output Path = uga-2f0f976.scm:/home/gent/scripts/BS2 GFF range methylator5-
10.py.o1426778
    Resource List.mem = 2gb
    Resource List.nodect = 1
    Resource List.nodes = 1:ppn=1:AMD
    Resource List.walltime = 480:00:00
    Variable List = PBS O QUEUE=batch, PBS O HOME=/home/zhuofei, .....,
                    PBS O WORKDIR=/home/zhuofei/MPIs,
```


Georgia Advanced Computing Resource Center UNIVERSITY OF GEORGIA

Outputs of showjobs JobID

\$ showjobs 1426778		
Job Id		1426778.pbs.scm
Job Name		BS2_GFF_range_methylator5-10.py
Output File		uga-2f0f976.scm:/home/gent/scripts/BS2_GFF_range_methylator5-
10.py.o1426778		
Error File		<pre>uga-2f0f976.scm:/home/gent/scripts/BS2_GFF_range_methylator5-</pre>
10.py.e1426778		
Working Directory		/home/gent/scripts
Home Directory		/home/gent
Submit Arguments		BS2_GFF_range_methylator5-10.py.sh
User Name		gent
Group Name		krdlab
Queue Name	:	batch
Wallclock Limit		20:00:00:00
Wallclock Duration	:	3:04:50:04
CPUTime		3:04:54:46
Memory Used		43.1Mb
Memory Limit		2gb
vmem Used		88.1Mb
Submit Time	:	Mon Mar 27 20:51:01 2017
Start Time		Tue Mar 28 03:06:41 2017
End Time		Fri Mar 31 07:58:32 2017
Exit Code		0
Master Host		n2

Georgia Advanced Computing Resource Center UNIVERSITY OF GEORGIA

Email notification from finished jobs

PBS Job Id: 700009.pbs.scm		PBS Job Id: 700097.pbs.scm Job Name: testJob
Exec host: $n1/4-27$		Exec host: $n5/4-27$
Execution terminated		Execution terminated
Exit status=0		Exit status=271
resources_used.cput=00:05:12		resources_used.cput=00:11:22
resources_used.energy_used=0		resources_used.energy_used=0
resources_used.mem=410984kb		resources_used.mem=412304kb
resources_used.vmem=6548516kb		resources_used.vmem=6548524kb
<pre>resources_used.walltime=04:00:59</pre>		<pre>resources_used.walltime=05:00:41</pre>
Error_Path: uga-		Error_Path: uga-
2f0f976.scm:/home/zhuofei/MPIs/testJob.o700009		2f0f976.scm:/home/zhuofei/MPIs/testJob.o700097
Output_Path: uga-		Output_Path: uga-
2f0f976.scm:/home/zhuofei/MPIs/testJob.o700009		2f0f976.scm:/home/zhuofei/MPIs/testJob.o700097

Appendix 1: Common Command Summary https://wiki.gacrc.uga.edu/wiki/Command_List

Tasks	Zcluster	Sapelo
Common file/dir operations	ls, cd, pwd, file, cat, less, more, cp mv, mkdir, rm, rmdir, dos2unix, mac2unix, etc.	
Transfer remote files	scp, sftp or SSH Secure Client File Transfer, FileZilla, WinSCP	
Open interactive session	qlogin	
Create working directory on global scratch	make_escratch	mkdir subdirectoryName
Edit script files	nano sub.sh or vim sub.sh	
Submit a batch job	qsub –q queueName –l –pe sub.sh	qsub sub.sh
check job status	qstat	
Check detailed job info	qsj jobID, qstat –j jobID, qacct –j jobID	qstat –f jobID, showjobs jobID
Cancel a job from queue	qdel jobID, qdel –u userID	qdel jobID
8/28/2017	GACRC Zcluster-Sapelo Migrating Training	24

Appendix 2: Current process for a UGA PI to request (re)activation or creation of a MyID for an external collaborator

To keep a user's MyID active *after* he/she leaves UGA, or to create a MyID for an external research collaborator:

- 1. The PI accesses the EITS helpdesk portal at <u>https://uga.teamdynamix.com/TDClient/Home/</u>
- 2. Click on "MyID Account Request" on the right side of the page in "Popular Services" section.
- 3. Use MyID credentials to log on the service page.
- 4. In the MyID Request From, enter his/her information and select "GACRC Remote Collaborator" for the Account Type field.
- 5. After verification by the GACRC Director, EITS will generate collaborator's MyID
- 6. If collaborator is visiting UGA campus, MyID can be obtained through OVPR's Visiting Researcher & Scholar program <u>https://research.uga.edu/visiting/</u>

Appendix 3: Useful Links

- GACRC Website: <u>http://gacrc.uga.edu</u>
- GACRC Wiki: https://wiki.gacrc.uga.edu/wiki/Main_Page
- Systems: https://wiki.gacrc.uga.edu/wiki/Systems
- How to Transfer Files: https://wiki.gacrc.uga.edu/wiki/Transferring_Files
- Current Software List: https://wiki.gacrc.uga.edu/wiki/Software
- How to Submit a Job: https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo
- How to Get Help: <u>http://help.gacrc.uga.edu/</u>
- GACRC Training Opportunities: https://wiki.gacrc.uga.edu/wiki/Training
- How to register a new GACRC New Lab: http://help.gacrc.uga.edu/labAcct.php
- How to register a new GACRC User: http://help.gacrc.uga.edu/userAcct.php