

GACRC Sapelo2 Cluster New User Training

Georgia Advanced Computing Resource Center (GACRC)

Enterprise Information Technology Services(EITS)

The University of Georgia

Outline

- GACRC
- Sapelo2 Cluster
 - Cluster Diagram and Overview
 - Five Directories
 - Five Computational Partitions
 - Software Environment
- Batch Job Submission Workflow
- Useful Commands: scontrol show job, seff, sacct-gacrc, sinfo-gacrc, qlogin
- GACRC Wiki and User Support
- Appendices

GACRC

- A high-performance-computing (HPC) center at the UGA
- Provide to the UGA research and education community an advanced computing environment:
 - HPC computing and networking infrastructure located at the Boyd Data Center
 - Comprehensive collection of scientific, engineering and business applications
 - Consulting and training services

Wiki: http://wiki.gacrc.uga.edu

Help and Support: https://wiki.gacrc.uga.edu/wiki/Getting-Help

Web Site: http://gacrc.uga.edu

Kaltura Channel: https://kaltura.uga.edu/channel/GACRC/176125031

Sapelo2 Cluster

Note: You need to connect to the **UGA network using VPN** when accessing from outside of the **UGA main campus**. UGA VPN: https://eits.uga.edu/access and security/infosec/tools/vpn/

Overview

- > Two nodes, your "username" is your MyID for both of them:
 - 1. For batch job workflow, the host to log into is sapelo2.gacrc.uga.edu
 - 2. For file transfers, the host to log into is xfer.gacrc.uga.edu
- > Five Directories:
 - 1. Home: Login landing spot; 200GB quota; Backed-up
 - 2. <u>Scratch</u>: High-speed FS for <u>temp files</u> needed for <u>current jobs</u>; NO quota; NOT backed-up; 30-day purge
 - 3. Work: High-speed FS for <u>input files</u> needed for <u>repeated jobs</u>; per group quota of 500GB and max 100,000 single files; NOT backed-up
 - 4. <u>Project</u>: Temporary data parking; per group quota of 1TB; Backed-up (ONLY accessible from Transfer node!)
 - 5. Local Scratch: Local storage on each individual compute node; 200~800GB quota; NOT backed-up
- Five Partitions: batch/batch_30d, highmem_p/highmem_30d_p, gpu_p/gpu_30d_p, inter_p, name_p

Five Directories https://wiki.gacrc.uga.edu/wiki/Disk Storage

Directory	Name	Quota	Accessible from	Intended Use	Backed- up	Important Notes
/home/MyID	Home	200GB		Static data, e.g. 1. Scripts, source codes 2. Local software	Yes	Not for storing data of your jobs!
/scratch/MyID	Scratch	No Limit	Login Transfer Compute	Temporary files needed for current running jobs	No	Clean up when your job finishes! Subject to "30-day purge" policy
/work/abclab	Work	500GB 10 ⁵ files		Input files needed for repeated jobs	No	Clean up when your job finishes! Group sharing is possible
/project/abclab	Project	1TB (initial)	Transfer	Temporary data parking	Yes	Group sharing is possible
/lscratch	Local Scratch	200GB	Compute	Jobs with heavy disk I/O operations	No	Clean up when job exits from node! Files generated are persistent

Accessing Directories from Nodes

More about scratch file system "30-day purge" policy

https://wiki.gacrc.uga.edu/wiki/Disk Storage#Scratch file system

Any file that is not accessed or modified by a compute job in a time period no longer than 30 days will be automatically deleted off the /scratch file system.

Measures circumventing this policy will be monitored and actively discouraged.

- > You have a list of those purgeable files located at /usr/local/var/lustre_stats/\$USER.over30d.files.lst
- > You are suggested to copy files from /scratch to /project or outside of GACRC
- > You should first move all unnecessary files and folders to /scratch/trash/\$USER
- > The fastest way to save old files is to copy them to /project area, using the fpsync utility on xfer.gacrc.uga.edu
- ➤ When you archive data using tar on /scratch, please do not use z option (compression option). After you achieved data by tar, you can use gzip to compress it.

Computational Partitions https://wiki.gacrc.uga.edu/wiki/Job_Submission partitions on Sapelo2

https://wiki.gacrc.uga.edu/wiki/Job_Submission_partitions_on_Sapelo2 https://wiki.gacrc.uga.edu/wiki/Systems#Sapelo2

Туре	Partition	Time limit	Max jobs Running	Max jobs Submit	Notes	
	batch		300 (variable)	20000	Regular nodes	
Regular	highmem_p	7 days	days 15 20 For running high memory jobs		For running high memory jobs	
	gpu_p		5	20	For running GPU-enabled jobs	
	batch_30d			2	A given user can have up to one job running at a time here, plus one pending, or two pending and	
Long-term	highmem_30d_p	30 days	1			
	gpu_30d_p				none running.	
Buy-in	name_p	variable			Partitions that target different groups' buy-in nodes. The name string is specific to each group.	

Partition	Total Nodes	RAM(GB) /Node	Max Mem(GB) /Single-node job	Cores /Node	Processor Type	GPU Cards /Node	InfiniBand			
	93			64	AMD EDVC					
	49	128	120	32	AMD EPYC					
batch	68			40	AMD Optoron					
batch_30d	2	256	250	48	AMD Opteron					
	42	192	180	32	Intel Xeon Skylake					
	32	64	58	28	Intel Xeon Broadwell	N/A				
	18	E12	F00	32	AMD EPYC					
	6	512	500	48	AMD Opteron		YES			
highmem_p highmem_30d_p	4			64	AMD EPYC					
	4	1024	990	28	Intel Xeon Broadwell					
	1			48	AMD Opteron					
	3	187	180	32	Intel Xeon Skylake	1 NVDIA P100				
gpu_p gpu_30d_p	2	128	120	16	Latel Veen	8 NVIDIA K40m				
gpab	1	96	90	12	Intel Xeon	7 NVIDIA K20Xm				
name_p	variable									
3/19/2021 GACRC SAPELO2 CLUSTER NEW USER TRAINING WORKSHOP 10										

Software Environment

https://wiki.gacrc.uga.edu/wiki/Software

- Approximately 900 software modules are installed (as of March 2021)
- Most modules are compiled EasyBuild (EB) toolchains GCC-8.3.0 or foss-2019b.
- Name format: Name/Version-Toolchain, e.g., Python/3.8.2-GCCcore-8.3.0 (case-sensitive)
- Module commands:
 - > ml spider pattern : Search module names matching a pattern
 - > ml moduleName: Load a module into your working environment
 - > ml av : List all available software modules installed on cluster
 - ml : List modules currently loaded
 - > ml -moduleName : Remove a module from working environment
 - > ml purge : Remove all modules from working environment

- Installation path of 3 kinds of Software on Sapelo2:
 - /apps/eb : Software built by EasyBuild, e.g., RepeatModeler/2.0.1-foss-2019b, TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4
 - /apps/gb : Software built out of EasyBuild (no EB toolchain in software name), e.g., ansys/19.2, matlab/R2019b, CellProfiler/4.0.0rc5_pyenv
 - /apps/singularity-images : Singularity container, e.g., busco-4.0.5.simg, repeatmodeler-2.0.1.simg, trinity-2.8.5.simg
- Once software is loaded, its installation path is stored in EBROOTAPPNAME, where APPNAME
 needs to be replaced by the actual software name (all capital letters), for example,

```
zhuofei@b1-1 ~$ ml TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4 zhuofei@b1-1 ~$ echo $EBROOTTENSORFLOW /apps/eb/TensorFlow/2.2.0-fosscuda-2019b-Python-3.7.4
```


Important Tip using Software

- When you load more than one software modules, toolchain compatibility is the most important thing you need to pay attention to
- Toolchain in included as a part of software name, if the software is built by Easybuild
- If you load more than one module and some toolchains are incompatible, you will end up with failing dependencies or Lmod errors, like this:

Lmod has detected the following error:
These module(s) exist but cannot be loaded as requested

https://wiki.gacrc.uga.edu/wiki/Available Toolchains and Toolchain Compatibility

Job Submission Workflow

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2

- 1. Log on to Login node using MyID and password, and two-factor authentication with Archpass Duo: ssh MyID@sapelo2.gacrc.uga.edu
- 2. On Login node, change directory to your <u>scratch</u> space: cd /scratch/MyID
- 3. Create a working subdirectory for a job: mkdir ./workDir
- 4. Change directory to workDir: cd ./workDir
- 5. Transfer data from local computer to <u>workDir</u>: use <u>scp</u> or <u>WinSCP</u> to connect Transfer node

 Transfer data on cluster to <u>workDir</u>: log on to Transfer node and then use <u>cp</u> or <u>mv</u>
- 6. Make a job submission script in workDir: nano ./sub.sh
- 7. Submit a job from workDir: sbatch ./sub.sh
- 8. Check job status: squeue --me or Cancel a job: scancel jobID

Step1: Log on to Login node - Mac/Linux using ssh

https://wiki.gacrc.uga.edu/wiki/Connecting

- 1. Open Terminal utility
- 2. Type command line: ssh MyID@sapelo2.gacrc.uga.edu
- You will be prompted for your MyID password
- 4. Sapelo2 access requires ID verification using two-factor authentication with Archpass
 - Duo. If you are not enrolled in Archpass Duo, please refer to

https://eits.uga.edu/access_and_security/infosec/tools/archpass_duo/ on how to enroll

Step1 (Cont.) - Mac/Linux using ssh

Use Terminal utility on Mac or Linux!

[zhuofei@localhost ~]\$ [zhuofei@localhost ~]\$ ssh zhuofei@sapelo2.gacrc.uga.edu ← Log on Password: Input MyID password! Enter a passcode or select one of the following options: 1. Duo Push to XXX-XXX-5758 2. Phone call to XXX-XXX-5758 3. Phone call to XXX-XXX-1925 4. SMS passcodes to XXX-XXX-5758 Passcode or option (1-5): 1 Select Duo authentication option! Success. Logging you in... Last login: Tue Sep 15 11:22:42 2020 from 128.192.75.65 zhuofei@ss-sub1 ~\$ ← I am on login node ss-sub1!

Step1 (Cont.) - Windows using PuTTY

- Download and install PuTTY: https://www.putty.org/
- 2. Detailed downloading and installation instructions:

https://wiki.gacrc.uga.edu/wiki/How to Install and Configure PuTTY

3. Detailed configuring and usage instructions:

https://wiki.gacrc.uga.edu/wiki/How to Install and Configure PuTTY#Configuring PuTTY

Step1 (Cont.) - Windows using PuTTY

The first time you connect to login node, PuTTY will give you this security alert window. Please click "Yes"

Step1 (Cont.) - Windows using PuTTY

Next you will enter your UGA MyID password and initiate DUO authentication procedure:


```
sapelo2.gacrc.uga.edu - PuTTY
                                                                      - - X
 requires a password (one factor) and a code, phone,
 or device (second factor) to successfully authenticate.
 If you are not enrolled in the UGA DUO service please
 visit the UGA DUO service self-service portal to enroll
  and configure or manage your DUO enabled devices.
 https://eits.uga.edu/access and security/infosec/tools/duo/portal/
 For additional help with UGA DUO authentication or to
 report an issue please visit:
 https://eits.uga.edu/access and security/infosec/tools/archpass/
 Duo two-factor login for zhuofei
 Enter a passcode or select one of the following options:
   1. Duo Push to XXX-XXX-5758
   2. Phone call to XXX-XXX-5758
   3. Phone call to XXX-XXX-1925
   4. Phone call to XXX-XXX-3535
   5. SMS passcodes to XXX-XXX-5758
                                       ← DUO option
 Passcode or option (1-5): 1
```


Step2: On Login node change directory to global scratch

Once you logged on, your current directory will be your <u>home directory</u>

Use cd command to change your current directory to /scratch/MyID

Use ls command to take a look in /scratch/MyID

```
zhuofei@ss-sub1 zhuofei$ ls
user test
```


Step3 - 4: Create and cd to a working subdirectory

Use mkdir command to make a subdirectory in /scratch/MyID

```
zhuofei@ss-sub1 zhuofei$ mkdir workDir
zhuofei@ss-sub1 zhuofei$ ls
user_test workDir
```

Use cd command to change your current directory to /scratch/MyID/workDir

Step5: Transfer data from local computer to workDir - Mac/Linux

https://wiki.gacrc.uga.edu/wiki/Transferring Files#Using scp

- 1. You need to connect to cluster's <u>Transfer node</u> (xfer.gacrc.uga.edu)
- 2. Open Terminal utility on <u>local computer</u> to use scp (-r) [Source] [Target]

E.g. 1: working on local computer, from Local → workDir on cluster

```
scp ./file zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/
scp -r ./folder/ zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/
```

E.g. 2: working on local computer, from workDir on cluster → Local

```
scp zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/file .
scp -r zhuofei@xfer.gacrc.uga.edu:/scratch/zhuofei/workDir/folder/ .
```


https://wiki.gacrc.uga.edu/wiki/Transferring Files#Using WinSCP

- 1. You need to connect to cluster's <u>Transfer node</u> (xfer.gacrc.uga.edu)
- 2. Use WinSCP on local computer
 - WinSCP can be downloaded from https://winscp.net/eng/index.php
 - Default installation procedure is simple
- 3. Alternative FileZilla https://wiki.gacrc.uga.edu/wiki/Transferring-Files#Using-FileZilla

https://wiki.gacrc.uga.edu/wiki/Transferring Files#Using WinSCP

https://wiki.gacrc.uga.edu/wiki/Transferring Files#Using WinSCP

https://wiki.gacrc.uga.edu/wiki/Transferring_Files#Using_WinSCP

Step5 (Cont.): Transfer data on cluster to workDir

- Log on to Transfer node (xfer.gacrc.uga.edu)
 - ✓ Mac/Linux: ssh MyID@xfer.gacrc.uga.edu (page 15-16)
 - ✓ Windows: use PuTTY to log in MyID@xfer.gacrc.uga.edu (page 17-19)
- Landing folder: /home/MyID (Home)
- You can transfer data between following directories on cluster using cp or mv:
 - 1. /home/MyID (Home)
 - 2. /scratch/MyID (Scratch)
 - 3. /work/abclab (Work)
 - 4. /project/abclab (Project)
- Most file systems on Transfer are auto-mounted upon the first time full-path access, e.g.,
 cd /project/abclab/

Step6: Make a job submission script in workDir

https://wiki.gacrc.uga.edu/wiki/Sample batch job submission scripts on Sapelo2

\$ nano sub.sh

nano is a simple text editor on Linux. You are welcome to use other editors like vim or emacs.

Ctrl-x to save file and quit from nano


```
#!/bin/bash
#SBATCH --job-name=testBowtie2
                                       # Job name (testBowtie2)
#SBATCH --partition=batch
                                       # Queue name (batch)
#SBATCH --ntasks=1
                                        # Run single task using one CPU core on a single node
                                       # Job memory limit (4 GB)
#SBATCH --mem=4G
                                       # Time limit hrs:min:sec or days-hours:minutes:seconds
#SBATCH --time=1:00:00
                                       # Do not load any users' explicit environment variables
#SBATCH --export=NONE
#SBATCH --output=%x %j.out
                                       # Standard output, testBowtie2 1234.out
                                       # Standard error log, testBowtie2 1234.err
#SBATCH --error=%x %j.err
#SBATCH --mail-type=END,FAIL
                                       # Mail events (BEGIN, END, FAIL, ALL)
#SBATCH --mail-user=username@uga.edu
                                        # Where to send mail
cd $SLURM SUBMIT DIR
                                       # Change directory to job submission directory
                                        # Load software module and run bowtie2 below
ml Bowtie2/2.4.1-GCC-8.3.0
bowtie2 -x ./index/lambda virus -U ./myreads.fq -S output.sam
```

To run the demo example, please copy

'K Cut Text

'U UnCut Text

these files into your working dir:

cp -r /usr/local/training/Sapelo2/*

Step7: Submit a job from workDir using sbatch

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to submit a job to the batch partition

```
zhuofei@ss-sub1 workDir$ pwd
/scratch/zhuofei/workDir
zhuofei@ss-sub1 workDir$ ls
index myreads.fq sub.sh
zhuofei@ss-sub1 workDir$ sbatch sub.sh
Submitted batch job 32860
```

sub.sh is a job submission script to

- 1. specify computing resources:
- 2. load software using module load
- 3. run any Linux commands you want to run
- 4. run the software

Step8: Check job status using squeue --me

https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

```
zhuofei@ss-sub1 workDir$ squeue --me
                                                        NODELIST (REASON)
JOBID PARTITION
                   NAME
                            USER
                                  ST
                                         TIME
                                               NODES
32862
                         zhuofei
                                         0:00
         batch testBowt
                                  PD
                                                        (None)
32861
                         zhuofei R
                                         0:05
                                                        c5-19
         batch testBowt
32860
         batch testBowt
                         zhuofei R
                                         4:37
                                                        c5-19
                                                        b1 - 2
32859
         batch testBowt
                         zhuofei
                                  CD
                                         9:29
```

R: job is Running

PD: job is PenDing, waiting for resources to become available

CD: job is **CompleteD** and is not longer running

CA: job is CAnceled and is not longer running

F: job is Failed (crashed) on the node and is not longer running

Note: "TIME" is the elapsed wall-clock time of your job running on cluster, instead of the CPU time.

Step8: Check job status using squeue --me -l

https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

zhuofei@ss-sub1 workDir\$ squeueme -l											
Tue Sep 15 15:00:51 2020											
JOBID PA	ARTITION	NAME	USER	STATE	TIME	TIME_LIMI	NODES	NODELIST (REASON)			
32866	batch te	stBowt	zhuofei	RUNNING	0:14	1:00:00	1	rc6-10			
32865	batch te	stBowt	zhuofei	RUNNING	0:30	1:00:00	1	rc6-10			
32864	batch te	estBowt	zhuofei	RUNNING	0:33	1:00:00	1	rc6-10			

Step8 (Cont.): Cancel job using scancel

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to cancel .28delete.29 a running or pending job

zhuofei@ss-sub1 workDir\$ squeueme -l Tue Sep 15 15:08:27 2020										
JOBID PARTITION	NAME	USER	STATE	TIME	TIME_LIMI	NODES NODELIST (REASON)				
32869 batch	testBowt	zhuofei	RUNNING	0:01	1:00:00	1 c5-19				
32868 batch	testBowt	zhuofei	RUNNING	0:05	1:00:00	1 c5-19				
32867 batch	testBowt	zhuofei	RUNNING			1 c5-19				
zhuofei@ss-sub1	workDir\$									
zhuofei@ss-sub1	workDir\$	scancel 3	2867							
zhuofei@ss-sub1	workDir\$	squeue	me -l							
Tue Sep 15 15:08	8:45 2020									
JOBID PARTITION	NAME	USER	STATE	TIME	TIME_LIMI	NODES NODELIST (REASON)				
32867 batch	testBowt	zhuofei	COMPLETI							
32869 batch	testBowt	zhuofei	RUNNING	0:19	1:00:00	1 c5-19				
32868 batch	testBowt	zhuofei	RUNNING	0:23	1:00:00	1 c5-19				
zhuofei@ss-sub1	workDir\$	squeue	me -l							
Tue Sep 15 15:08	8:50 2020									
JOBID PARTITION	NAME	USER	STATE	TIME	TIME_LIMI	NODES NODELIST (REASON)				
32869 batch	testBowt	zhuofei	RUNNING	0:19	1:00:00	1 c5-19				
32868 batch	testBowt	zhuofei	RUNNING	0:23	1:00:00	1 c5-19				

```
zhuofei@ss-sub1 workDir$ scontrol show job 32870
JobId=32870 JobName=testBowtie2
   UserId=zhuofei(1772) GroupId=gacrc-instruction(21004) MCS label=N/A
   Priority=1 Nice=0 Account=gacrc-appadmin QOS=normal
   JobState=RUNNING Reason=None Dependency=(null)
   Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
   RunTime=00:00:21 TimeLimit=01:00:00 TimeMin=N/A
   SubmitTime=2020-09-15T15:30:41 EligibleTime=2020-09-15T15:30:41
   StartTime=2020-09-15T15:30:42 EndTime=2020-09-15T16:30:42 Deadline=N/A
   Partition=batch AllocNode:Sid=128.192.75.18:94107
   ReqNodeList=(null) ExcNodeList=(null)
   NodeList=c5-19
   BatchHost=c5-19
   NumNodes=1 NumCPUs=4 NumTasks=1 CPUs/Task=4 ReqB:S:C:T=0:0:*:*
   Command=/scratch/zhuofei/workDir/sub.sh
   WorkDir=/scratch/zhuofei/workDir
   StdErr=/scratch/zhuofei/workDir/testBowtie2 32870.err
   StdIn=/dev/null
   StdOut=/scratch/zhuofei/workDir/testBowtie2 32870.out
```

zhuofei@ss-sub1 workDir\$ seff 37259 Job ID: 37259 Cluster: tc2 User/Group: zhuofei/gacrc-instruction State: COMPLETED (exit code 0) Cores: 1 CPU Utilized: 00:09:45 CPU Efficiency: 99.66% of 00:09:47 core-walltime Job Wall-clock time: 00:09:47 Memory Utilized: 197.34 MB Memory Efficiency: 4.82% of 4.00 GB

zhuofei@ss-sub1 workDir\$ sacct-gacrc

JobID JobName User Partition NodeList AllocNodes NTasks NCPUS ReqMem MaxVMSize State CPUTime Elapsed Timelimit ExitCode WorkDir

275	bowti+	zhuofei	batch	rc6-10	1		1	4Gn		COMPLETED	00:09:13	00:09:13 01:00:00	0:0 /scratch/zhu
275.batch	batch			rc6-10	1	1	1	4Gn	396868K	COMPLETED	00:09:13	00:09:13	0:0
275.extern	extern			rc6-10	1	1	1	4Gn	142616K	COMPLETED	00:09:13	00:09:13	0:0
276	amberjob	shtsai	gpu_p	c4-23	1		1	10Gn		CANCELLED+	00:03:19	00:03:19 02:00:00	0:0 /scratch/sht
276.batch	batch			c4-23	1	1	1	10Gn	221140K	CANCELLED	00:03:20	00:03:20	0:15
276.extern	extern			c4-23	1	1	1	10Gn	169800K	COMPLETED	00:03:19	00:03:19	0:0
277	mpitest	shtsai	batch	c2-[11-12]	2		24	600Mc		COMPLETED	04:01:12	00:10:03 02:00:00	0:0 /scratch/sht
277.batch	batch			c2-11	1	1	12	600Mc	221268K	COMPLETED	02:00:36	00:10:03	0:0
277.extern	extern			c2-[11-12]	2	2	24	600Mc	169800K	COMPLETED	04:01:12	00:10:03	0:0
277.0	orted			c2-12	1	1	1	600Mc	265640K	COMPLETED	00:00:01	00:00:01	0:0
278	bash	shtsai	inter_p	c2-4	1		1	2Gn		RUNNING	00:13:37	00:13:37 12:00:00	0:0 /scratch/sht
278.extern	extern			c2-4	1	1	1	2Gn		RUNNING	00:13:37	00:13:37	0:0
278.0	bash			c2-4	1	1	1	2Gn		RUNNING	00:13:37	00:13:37	0:0

zhuofei@ss-sub1 workDir\$ sacct-gacrc-v 47939

JobID 47939

JobName testBowti+

User zhuofei

Partition batch

NodeList c1-3

AllocNodes

State RUNNING

CPUTime 00:00:28

Elapsed 00:00:28

Timelimit 01:00:00

ExitCode 0:0

WorkDir /scratch/zhuofei/workDir_sapelo2

NTasks :

NCPUS 1

ReqMem 4Gn

zhuofei@ss-sub1 workDir\$ sinfo-gacrc

PARTITION	NODELIST	STATE	CPUS	MEMORY(MB	3) AVAIL_FEATURES	GRES
batch	ra3-19,ra4-12	down*	48	128914	AMD,Opteron,QDR	(null)
batch	b1-[3-23],d4-[6-10]	drained	32+	128596+	AMD,EPYC,EDR	(null)
batch	c1-3	drained	28	64205	Intel,Broadwell,EDR	(null)
batch	ra3-[1-18,20-24],ra4-[2-11,13-14,18-20]	drained	48	128914+	AMD,Opteron,QDR	(null)
batch	rc6-10	drained	28	64205	Intel, Broadwell, QDR	(null)
batch	b1-2,d4-5	idle	32+	128596+	AMD,EPYC,EDR	(null)
batch	c5-19	idle	32	192039	Intel,Skylake,EDR	(null)
gpu_p	c4-23	drained	32	192038	Intel,Skylake,EDR	gpu:P100:1
highmem_p	ra4-16	draining	48	128914	AMD,Opteron,QDR	(null)
highmem_p	d4-[11-12]	drained	32	515743	AMD,EPYC,EDR	(null)
highmem_p	ra4-[21-24]	drained	48	515986	AMD,Opteron,QDR	(null)
inter_p	ra4-16	draining	48	128914	AMD,Opteron,QDR	(null)
inter_p	ra4-17	drained	48	257938	AMD,Opteron,QDR	(null)

Obtain Job Details

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to check resource utilization of a running or finished job

Option 1: scontrol show job JobID for details of a running or pending jobs

Option 2: seff for details of computing resource usage of a finished job

Option 3: sacct-gacrc or sacct-gacrc-v for details of computing resource usage of a running or finished job

Option 4: Email notification from finished jobs (completed, canceled, or crashed), if using:

```
#SBATCH --mail-user=username@uga.edu
#SBATCH --mail-type=END,FAIL
```


Interactive jobs

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to open an interactive session

https://wiki.gacrc.uga.edu/wiki/Running Jobs on Sapelo2#How to run an interactive job with Graphical User Interface capabilities

Description	Slurm Command
Start an interactive session	qlogin
Start an interactive session with X forwarding	xqlogin

qlogin	srunpty -p inter_pmem=2Gnodes=1ntasks-per-node=1time=8:00:00job-name=qlogin bash
xqlogin	srunptyx11 -p inter_pmem=2Gnodes=1ntasks-per-node=1time=8:00:00job-name=xqlogin bash

GACRC Wiki http://wiki.gacrc.uga.edu Kaltura channel https://kaltura.uga.edu/channel/GACRC/176125031

System: https://wiki.gacrc.uga.edu/wiki/Systems#Sapelo2

Connection: https://wiki.gacrc.uga.edu/wiki/Connecting#Connecting to Sapelo2

Software: https://wiki.gacrc.uga.edu/wiki/Software on Sapelo2

Running Jobs: https://wiki.gacrc.uga.edu/wiki/Running_Jobs_on_Sapelo2

Monitoring Jobs: https://wiki.gacrc.uga.edu/wiki/Monitoring Jobs on Sapelo2

Sample scripts: https://wiki.gacrc.uga.edu/wiki/Sample-batch-job-submission-scripts-on-Sapelo2

Transfer File: https://wiki.gacrc.uga.edu/wiki/Transferring_Files

Linux Command: https://wiki.gacrc.uga.edu/wiki/Command-List

Training: https://wiki.gacrc.uga.edu/wiki/Training

GACRC Help and Support

https://wiki.gacrc.uga.edu/wiki/Getting Help

Job Troubleshooting:

Please tell us details of your question or problem, including but not limited to:

- ✓ Your user name
- ✓ Your job ID
- ✓ Your working directory
- ✓ The queue name and command you used to submit the job

Software Installation:

- ✓ Specific name and version of the software
- ✓ Download website
- ✓ Supporting package information if have

When you ask GACRC to test or troubleshoot your jobs, Please make sure of the correctness of your datasets being used!

GACRC Service Catalog

Georgia Advanced Computing Resource Center (GACRC) service catalog

Services (11)

Account Creation

For a research group's PI to request user accounts for group members on the GACRC computing systems.

Class Account Creation

For an instructor to request user accounts for students attending a course that will need to use GACRC computing systems.

Class Account Modification

For instructors to request changes to be made in previously requested class account.

Computing Lab Modification/Deletion

General Internal

General Support

Report issues and request help with GACRC systems, except for software installation requests and account/lab creation requests.

Lab Creation

For a research group's PI to register a computing lab on the GACRC computing systems

Modify/Delete Account

For PIs to request changes in or deletion of user accounts on GACRC computing systems.

Software Installation/Update

Request software and common application database (e.g. NCBI blast databases) installation and upgrade.

My Recent Requests

home directory is not fully provisioned: ss57215

GACRC Sapelo2 New Lab/Use Account Request 2018-11-14_preTraining

GACRC Sapelo2 Cluster New Lab/Use Account Request 2018-11-05_preTraining

provision 5 user accounts for ugahelpdesk group

GACRC Sapelo2 New Lab/Use Account Request 2018-10-22_preTraining

View All Recent Requests >

Popular Services

EITS Help Desk Support Request

MyID Account Request

Change Request

02 Restricted VPN Access

Terry Classroom & Meeting Room Support

View All Popular Services >

My Recently Visited Services

Modify/Delete Account

Class Account Creation

This site is operated by Enterprise Information Technology Services (EITS) at the University of Georgia.

Privacy | Accessibility | Website Feedback

https://uga.teamdynamix.com/TDClient/Requests/ServiceCatalogSearch

Slurm job states

Code	State	Meaning
R	Running	Job is running on compute node(s)
PD	Pending	Job is waiting for compute node(s)
CD	Completed	Job completed
CG	Completing	Job is completing
CA	Canceled	Job was canceled
F	Failed	Job terminated with non-zero exit code
NF	Node Fail	Job terminated due to failure of node(s)

Commands for submitting and canceling jobs

Description	Slurm Command
Submit a batch job to queue	sbatch sub.sh
Delete a job from queue	scancel <jobid></jobid>
Cancel all your job(s)	scancel -u <username></username>
Cancel all your pending job(s)	scancel -t PENDING -u <username></username>
Cancel your job(s) by job name	scancelname <jobname></jobname>
Cancel an element (index) of an array job (jobID)	scancel <jobid>_<index></index></jobid>

Commands for monitoring jobs

Description	Slurm Command
Command	squeue or squeue -l
Job status of all your jobs	squeueme or squeueme -l
Job status of a job	squeue -j <jobid></jobid>
Job status of job(s) from a user	squeue -u <username></username>
Job status with details	scontrol show job <job id=""> scontrol show job -dd <job id=""></job></job>
Job's resource usage	sacct-gacrc
View job batch script	scontrol write batch_script <job id=""> [filename]</job>

Slurm headers for running a Serial (single-core) job

https://wiki.gacrc.uga.edu/wiki/Sample batch job submission scripts on Sapelo2

```
#!/bin/bash
#SBATCH --job-name=testBowtie2
                                         # Job name (testBowtie2)
#SBATCH --partition=batch
                                         # Queue name (batch)
#SBATCH --ntasks=1
                                         # Run in a single task using one CPU core on a single node
#SBATCH --mem=4G
                                         # Job memory limit (4 GB)
#SBATCH --time=1:00:00
                                         # Time limit hrs:min:sec or days-hours:minutes:seconds
#SBATCH --export=NONE
                                         # Do not load any users' explicit environment variables
#SBATCH --output=%x %j.out
                                         # Standard output log, e.g., testBowtie2_1234.out
#SBATCH --error=%x %j.err
                                         # Standard error log, e.g., testBowtie2 1234.err
#SBATCH --mail-type=END,FAIL
                                         # Mail events (BEGIN, END, FAIL, ALL)
#SBATCH --mail-user=username@uga.edu
                                         # Where to send mail
cd $SLURM SUBMIT DIR
                                         # Change directory to job submission directory
ml Bowtie2/2.4.1-GCC-8.3.0
                                         # Load software module and run bowtie2 below
bowtie2 -x ./index/lambda_virus -U ./myreads.fq -S output.sam
```

Slurm headers for running a Threaded job


```
#!/bin/bash
                                         # Job name (testBowtie2)
#SBATCH --job-name=testBowtie2
#SBATCH --partition=batch
                                          # Queue name (batch)
#SBATCH --nodes=1
                                          # Run all processes on a single node
#SBATCH --ntasks=1
                                          # Run in a single task on a single node
#SBATCH --cpus-per-task=8
                                         # Number of CPU cores per task (8)
#SBATCH --mem=10G
                                          # Job memory limit (10 GB)
#SBATCH --time=1:00:00
                                          # Time limit hrs:min:sec or days-hours:minutes:seconds
#SBATCH --export=NONE
                                         # Do not load any users' explicit environment variables
#SBATCH --output=%x %j.out
                                         # Standard output log, e.g., testBowtie2 1234.out
                                         # Standard error log, e.g., testBowtie2_1234.err
#SBATCH --error=%x %j.err
#SBATCH --mail-type=END,FAIL
                                         # Mail events (BEGIN, END, FAIL, ALL)
#SBATCH --mail-user=username@uga.edu # Where to send mail
cd $SLURM_SUBMIT_DIR
ml Bowtie2/2.4.1-GCC-8.3.0
bowtie2 -p 8 -x ./index/lambda_virus -U ./myreads.fq -S output.sam
```

Slurm headers for running an Array job


```
#!/bin/bash
#SBATCH --job-name=testBowtie2Array
                                          # Job name (testBowtie2Array)
#SBATCH --partition=batch
                                          # Queue name (batch)
                                          # Run in a single task using one CPU core on a single node
#SBATCH --ntasks=1
#SBATCH --mem=4G
                                          # Job memory limit (4 GB)
#SBATCH --time=1:00:00
                                          # Time limit hrs:min:sec or days-hours:minutes:seconds
#SBATCH --export=NONE
                                          # Do not load any users' explicit environment variables
#SBATCH --output=%x_%j.out
                                          # Standard output log, e.g., testBowtie2Array 1234.out
#SBATCH --error=%x %j.err
                                          # Standard error log, e.g., testBowtie2Array 1234.err
#SBATCH --array=0-9
                                          # Array element range from 0 to 9, i.e. 10 element jobs
cd $SLURM_SUBMIT_DIR
ml Bowtie2/2.4.1-GCC-8.3.0
                                          # Original data is split into 10 pieces and run in each element job
bowtie2 -x ./index/lambda_virus -U ./myreads_$SLURM_ARRAY_TASK_ID.fq \
-S output_$SLURM_ARRAY_TASK_ID.sam
```


Slurm headers for running a Threaded (OpenMP) job

```
#!/bin/bash
#SBATCH --job-name=testOpenMP
                                              # Job name (testOpenMP)
#SBATCH --partition=batch
                                              # Queue name (batch)
#SBATCH --nodes=1
                                              # Run all processes on a single node
#SBATCH --ntasks=1
                                              # Run in a single task on a single node
#SBATCH --cpus-per-task=12
                                              # Number of CPU cores per task (12)
                                              # Job memory limit (10 GB)
#SBATCH --mem=10G
                                              # Do not load any users' explicit environment variables
#SBATCH --export=NONE
#SBATCH --time=24:00:00
                                              # Time limit hrs:min:sec or days-hours:minutes:seconds
#SBATCH --output=%x %j.log
                                              # Standard output and error log, e.g., testOpenMP_1234.log
#SBATCH --mail-type=END,FAIL
                                              # Mail events (BEGIN, END, FAIL, ALL)
#SBATCH --mail-user=username@uga.edu
                                              # Where to send mail
cd $SLURM_SUBMIT_DIR
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK # Sets the number of threads to use for OpenMP parallel regions
ml foss/2019b
                                              # Load toolchain module
./myProgram.x
                                              # Run your program binary compiled with OpenMP
```

Slurm headers for running a MPI job


```
#!/bin/bash
#SBATCH --job-name=testMPI
                                         # Job name (tesMPI)
#SBATCH --partition=batch
                                         # Queue name (batch)
#SBATCH --nodes=2
                                         # Run on two nodes
                                         # How many tasks on each node; Number of tasks=32=MPI ranks
#SBATCH --ntasks-per-node=16
#SBATCH --cpus-per-task=1
                                         # Number of CPU cores per task; 16 CPU cores per node
#SBATCH --mem-per-cpu=500M
                                         # Memory per allocated CPU; 8GB (500MB*16) memory per node
#SBATCH --time=24:00:00
                                         # Time limit hrs:min:sec or days-hours:minutes:seconds
#SBATCH --export=NONE
                                         # Do not load any users' explicit environment variables
#SBATCH --output=%x %j.log
                                         # Standard output and error log, e.g., testMPI 1234.log
#SBATCH --mail-type=END,FAIL
                                         # Mail events (BEGIN, END, FAIL, ALL)
#SBATCH --mail-user=username@uga.edu
                                         # Where to send mail
cd $SLURM SUBMIT DIR
ml foss/2019b
                                         # Load toolchain module
mpirun -n 32 ./myProgram.x
                                         # Run your program binary compiled with OpenMPI with 32 ranks
```


Slurm headers for running a Hybrid MPI/OpenMP job

```
#!/bin/bash
#SBATCH --job-name=testHybrid
                                         # Job name (testHybrid)
#SBATCH --partition=batch
                                         # Queue name (batch)
#SBATCH --nodes=2
                                         # Run on two nodes
#SBATCH --ntasks-per-node=8
                                         # How many tasks on each node; Number of tasks=16=MPI ranks
#SBATCH --cpus-per-task=4
                                         # Number of CPU cores per task; 32 CPU cores per node
                                         # Memory per allocated CPU; 16GB (500MB*32) memory per node
#SBATCH --mem-per-cpu=500M
                                         # Time limit hrs:min:sec or days-hours:minutes:seconds
#SBATCH --time=24:00:00
#SBATCH --export=NONE
                                         # Do not load any users' explicit environment variables
                                         # Standard output and error log
#SBATCH --output=%x_%j.log
#SBATCH --mail-type=END,FAIL
                                         # Mail events (BEGIN, END, FAIL, ALL)
                                         # Where to send mail
#SBATCH --mail-user=username@uga.edu
cd $SLURM_SUBMIT_DIR
                                         # Change directory to job submission directory
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK # Sets the number of threads to use for OpenMP parallel regions
ml foss/2019b
                                         # Load toolchain module
mpirun -n 16 ./myProgram.x
                                         # Run your program binary compiled with OpenMPI with 16 ranks
```

Slurm headers for running a GPU job


```
#!/bin/bash
#SBATCH --job-name=amber
                                              # Job name
#SBATCH --partition=gpu_p
                                              # Partition (queue) name, i.e., gpu p
#SBATCH --gres=gpu:1
                                              # Requests one GPU device; --gres=gpu:P100:1, --gres=gpu:K40:1
#SBATCH --ntasks=1
                                              # Run a single task
#SBATCH --cpus-per-task=2
                                              # Number of CPU cores per task
#SBATCH --mem=40gb
                                              # Job memory request
                                              # Time limit hrs:min:sec
#SBATCH --time=10:00:00
#SBATCH --export=NONE
                                              # Do not load any users' explicit environment variables
#SBATCH --output=%x %j.out
                                              # Standard output and error log, e.g., amber_1234.out
#SBATCH --mail-type=END,FAIL
                                              # Mail events (BEGIN, END, FAIL, ALL)
#SBATCH --mail-user=username@uga.edu
                                              # Where to send mail
cd $SLURM_SUBMIT_DIR
ml Amber/18-fosscuda-2018b-AmberTools-18-patchlevel-10-8
mpiexec $AMBERHOME/bin/pmemd.cuda -O -i ./prod.in -o prod_c4-23.out -p ./dimerFBP_GOL.prmtop -c ./restart.rst \
-r prod.rst -x prod.mdcrd
```



```
#!/bin/bash
#SBATCH --job-name=test sortmerna
                                               # Job name
#SBATCH --partition=batch
                                               # Partition (queue) name
#SBATCH --ntasks=1
                                               # Run on a single CPU
#SBATCH --mem=8gb
                                               # Job memory request
#SBATCH --time=02:00:00
                                               # Time limit hrs:min:sec
#SBATCH --export=NONE
                                               # Do not load any users' explicit environment variables
#SBATCH --output=sortmerna.%j.out
                                               # Standard output log, e.g., sortmerna.1234.out
#SBATCH --error=sortmerna.%j.err
                                               # Standard error log, e.g., sortmerna.1234.err
                                               # Number of CPU cores per task
#SBATCH --cpus-per-task=4
#SBATCH --mail-type=END,FAIL
                                               # Mail events (NONE, BEGIN, END, FAIL, ALL)
#SBATCH --mail-user=username@uga.edu
                                               # Where to send mail
cd $SLURM SUBMIT DIR
singularity exec /apps/singularity-images/sortmerna-3.0.3.simg sortmerna --threads 4 --ref db.fasta,db.idx --reads file.fa \
--aligned base name output
```


Guideline Tips

- Do NOT use Login node to run CPU/memory intensive tasks directly → submit job to queue!
- Do NOT use Login Node to transfer data between your local computer and cluster

 use Transfer node!
- Do NOT use Home for storing job data → use /scratch/MyID
- Do NOT park data in Scratch or Local Scratch → clean up when job finishes or exits from node
- Do NOT park data permanently in Project download data to your local drive
- NO large memory job running on batch partition

 use highmem_p
- NO small memory job running on highmem_p partition → use batch
- In general, <u>number of threads you want to run with a parallel job = number of cores requested</u>
- When you archive data using tar on /scratch, please do not use z option (compression option). After you achieved data by tar, you can use gzip to compress it.

Practical Tips

Each directory should not have too many files inside! A rule of thumb would
be to try to keep no more than a few tens of thousands of files (<10000 would
be even better) in any single directory which is accessed frequently

All files are in ONE single dir!

Files are organized in subdirs!

Thank You!

Telephone Support

EITS Help Desk: 706-542-3106

Monday – Thursday: 7:30 a.m. – 7:30 p.m.

Friday: 7:30 a.m. – 6 p.m.

Saturday − Sunday: 1 p.m. − 7 p.m.

Georgia Advanced Computing Resource Center

101-108 Computing Services building

University of Georgia

Athens, GA 30602

https://gacrc.uga.edu/