

Introduction to HPC Using zcluster at GACRC

Georgia Advanced Computing Resource Center University of Georgia Suchitra Pakala <u>pakala@uga.edu</u> Slides courtesy: Zhoufei Hou

OVERVIEW

GACRC

High Performance Computing (HPC)

zcluster – Architecture, Operation

Access and Working with zcluster

Georgia Advanced Computing Resource Center

Who Are We?

- Georgia Advanced Computing Resource Center (GACRC)
- Collaboration between the Office of Vice President for Research (**OVPR**) and
- the Office of the Vice President for Information Technology (OVPIT)
- Guided by a faculty advisory committee (GACRC-AC)

Why Are We Here?

To provide computing hardware and network infrastructure in support of highperformance computing (HPC) at UGA

Where Are We?

✤ <u>http://gacrc.uga.edu</u> (Web)

http://wiki.gacrc.uga.edu (Wiki)

- http://gacrc.uga.edu/help/ (Web Help)
- https://wiki.gacrc.uga.edu/wiki/Getting Help (Wiki Help)

GACRC Users September 2015

Colleges & Schools	Depts	Pls	Users
Franklin College of Arts and Sciences	14	117	661
College of Agricultural & Environmental Sciences	9	29	128
College of Engineering	1	12	33
School of Forestry & Natural Resources	1	12	31
College of Veterinary Medicine	4	12	29
College of Public Health	2	8	28
College of Education	2	5	20
Terry College of Business	3	5	10
School of Ecology	1	8	22
School of Public and International Affairs	1	3	3
College of Pharmacy	2	3	5
	40	214	970
Centers & Institutes	9	19	59
TOTALS	5: 49	233	1029

GACRC Users September 2015

Centers & Institutes	Pls	Users
Center for Applied Isotope Study	1	1
Center for Computational Quantum Chemistry	3	10
Complex Carbohydrate Research Center	6	28
Georgia Genomics Facility	1	5
Institute of Bioinformatics	1	1
Savannah River Ecology Laboratory	3	9
Skidaway Institute of Oceanography	2	2
Center for Family Research	1	1
Carl Vinson Institute of Government	1	2
	19	59

Computer Cluster

Cluster is a widely used term meaning independent computers combined into a unified system through software and high speed dedicated network

It provides greater computational power than a single computer can provide – LARGER problems can be solved

Used for:

High Availability (HA)

Greater reliability

High Performance Computing (HPC)

High Performance Computing (HPC)

Several "definitions" can be found, but, in general:

Use of Parallel processing for solving complex computational problems using advanced application programs efficiently, reliably and quickly

High Performance Computing (HPC)

Serial Computing

- A problem is broken into a discrete series of instructions
- Instructions are executed sequentially
- Executed on a single processor
- Only one instruction may execute at any moment in time

Parallel Computing

- A problem is broken into discrete parts that can be solved concurrently
- Each part is further broken down to a series of instructions
- Instructions from each part execute simultaneously on different processors
- An overall control/coordination mechanism is employed

Zcluster Overview

- General Information
- Computing Resources
- Storage Environment

/lscratch

zcluster – General Information

GACRC zcluster is a Linux high performance computing (HPC) cluster:

qlogin

Operating System: 64-bit Red Hat Enterprise Linux 5 (RHEL 5)

Login Node: zcluster.rcc.uga.edu
Interactive Node: compute-14-7/9 Copy Node: copy.rcc.uga.edu

Internodal Communication: 1Gbit network compute nodes \Leftrightarrow compute nodes compute nodes \Leftrightarrow storage systems <u>NOTE</u>: Please Do Not run jobs on the zcluster login node - use the Queues or the Interactive Nodes.

zcluster – General Information

- Batch-queueing System:
 - Jobs can be started (submitted), monitored, and controlled
 - Determine which compute node is the best place to run a job
 - Determine appropriate execution priority for a job to run
- On zcluster: Sun Grid Engine (SGE)

zcluster – Computing Resources

	Queue Type	Queue Name	Nodes	Processor	Cores/Node	RAM(GB)/Node	Cores	NVIDIA GPU
	Regular	rcc-30d	45	Intel Xeon	12	48	540	N/A
			150		8	16	1200	
			1		8	128	8	N/A
	Lligh Manager	rcc-m128-30d	4	Intel Xeon	8	192	32	
	High Wemory	mory	10		12	256	120	
		rcc-m512-30d	2		32	512	64	
	Multi Core	rcc-mc-30d	6	AMD Opteron	32	64	192	N/A
	Interactive	interq	2	AMD Opteron	48	132	96	N/A
		rcc-sgpu-30d	2	Intel Xeon	8	48	16	4 Tesla S1070 cards
	GPU	rcc-mgpu-30d	2		12	48	24	9 Tesla (Fermi) M2070 cards
		rcc-kgpu-30d	4		12	96	24	32 Tesla (Kepler) K20Xm cards

Total peak performance: 23 Tflops

ÎGACRC

- ✤ Home directory → /home/groupname/username
 - Mounted and visible on all nodes, with a quota of ~100GB
 - Any directory on /home has snapshot backups
 - Taken once a day, and maintained 4 daily ones and 1 weekly one
 - Name: .snapshot, e.g., /home/abclab/jsmith/.snapshot
 - Completely invisible, however, user can "cd" into it and then "ls":

pakala@zcluster:~\$ ls -a			
- · · · · · · · · · · · · · · · · · · ·	.bash_history.zcluster		
· ·	.bash_history.zhead	cmd_kill	
.bash_history	<pre>.bash_logout</pre>	e4	
.bash_history.compute-14-7	.bash_profile	.emacs	
.bash_history.compute-14-9	.bashrc		.viminfo
pakala@zcluster:~\$ cd .snaps	shot		
pakala@zcluster:~/.snapshot	\$ 1s		
2015.11.15.00.00.01.weekly			
2015.11.19.01.00.01.daily			
2015.11.20.01.00.01.daily			
2015.11.21.01.00.01.daily			

- ✤ Local scratch → /lscratch/username
 - ✤ On local disk of each compute node → node-local storage
 - rcc-30d 8-core nodes: ~18GB, rcc-30d 12-core nodes: ~370GB
 - No snapshot backup
 - Usage Suggestion: If your job writes results to /lscratch, job submission script should move the data to your home or escratch before exit
- - Create with make escratch command
 - Visible to all nodes with a quota of 4TB
 - No snapshot backup
 - To be deleted after 37 days

Filesystem	Role	Quota	Accessible from	Intended Use	Notes
/home/abclab/username	Home	100GB	zcluster.rcc.uga.edu (Login)	Highly static data being used frequently	Snapshots
/escratch4/username	Scratch	4TB	copy.rcc.uga.edu (Copy) Interactive nodes (Interactive) compute nodes (Compute)	Temporarily storing large data being used by jobs	Auto-deleted in 37 days
/lscratch/username	Local Scratch	18 ~ 370GB	Individual compute node	Jobs with heavy disk I/O	User to clean up
/project/abclab	Storage	Variable	copy.rcc.uga.edu (Copy)	Long-term data storage	Group sharing possible

- Note: 1. /usr/local : Software installation directory
 - /db : bioinformatics database installation directory
 - 2. To login to Interactive nodes, use qlogin from Login node

6 Main Function	On/From-Node	Related Filesystem
Login Landing	Login or Copy	/home/abclab/username (Home) (Always!)
Batch Job Submitting	Login or Interactive	/escratch4/username (Scratch) (Suggested!) /home/abclab/username (Home)
Interactive Job Running	Interactive	/escratch4/username (Scratch) /home/abclab/username (Home)
Data Archiving , Compressing and Transferring	Copy or Transfer	/escratch4/username (Scratch) /home/abclab/username (Home)
Job Data Temporarily Storing	Compute	/lscratch/username (Local Scratch) /escratch4/username (Scratch)
Long-term Data Storing	Copy or Transfer	/project/abclab

How does zcluster operate?

Zcluster – Tips, Dos and Don'ts

Before we start:

- To get zcluster to be your best HPC buddy, go to GACRC Wiki (<u>http://wiki.gacrc.uga.edu</u>) GACRC Web (<u>http://gacrc.uga.edu</u>)
- To get the most effective and qualified support from us, go to GACRC Support (<u>https://wiki.gacrc.uga.edu/wiki/Getting_Help</u>)
- To work happily and productively, follow the cluster's Community Code of Conduct (CCOC)

zcluster – Tips, Dos and Don'ts continued

• Cluster's CCOC:

On cluster, you are not alone... Each user is sharing finite resources, e.g., CPU cycles, RAM, disk storage, network bandwidth, with other researchers. *What you do may affect other researchers on the cluster*.

6 rules of thumb to remember:

- NO jobs running on login node
- NO multi-threaded job running with only 1 core requested
- NO large memory job running on regular nodes
- NO long job running on interactive node
- NO small memory job running on large memory nodes
- Use the copy node for file transfer and compression

How to work with zcluster? - Overview

- Start with zcluster
- Connect & Login
- Transfer Files
- Run Interactive Jobs
- Submit Batch Jobs
 - How to submit *serial*, *threaded*, and *MPI* batch jobs
 - How to check job status, cancel a job, etc.
 - Software Installed

Getting Started with zcluster

- You need a User Account : username@zcluster.rcc.uga.edu
- Procedure: https://wiki.gacrc.uga.edu/wiki/User_Accounts
- User receives an email notification once the account is ready
- User can use passwd command to change initial temporary password
- A UGA faculty member (PI) may register a computing lab: http://help.gacrc.uga.edu/labAcct.php

The PI of a computing lab may request user accounts for members of his/her computing lab: http://help.gacrc.uga.edu/userAcct.php

Connection & Login @ zcluster

Open a connection: Open a terminal and ssh to your account

ssh pakala@zcluster.rcc.uga.edu

or

ssh -X pakala@zcluster.rcc.uga.edu

(¹-X is for X windows application running on the cluster to be forwarded to your local machine ² If using Windows, use SSH client to open connection, get from UGA download software page)

Logging in: You will be prompted for your zcluster password

pakala@zcluster.rcc.uga.edu's password:

(³ On Linux/Mac, when you type in the password, the prompt blinks and does not move)

Logging out: exit to leave the system

pakala@zcluster:~\$ exit

Copy node (copy.rcc.uga.edu)

Transfer Files @ zcluster

♦ On Linux, Mac or cygwin on Windows : scp [Source] [Target]
 E.g. 1: On local machine, do Local → zcluster

scp file1 username@copy.rcc.uga.edu:~/subdir

SCP

scp *.dat username@copy.rcc.uga.edu:~/subdir

E.g. 2: On local machine, do zcluster \rightarrow Local

User's local

scp username@copy.rcc.uga.edu:~/subdir/file ./

scp username@copy.rcc.uga.edu:~/subdir/*.dat ./

On Windows: FileZilla, WinSCP, SSH Secure Client, etc.

Run Interactive Jobs @ zcluster

To run an interactive job, you need to open a session on an interactive node using qlogin command:

- Current maximum runtime is 12 hours
- When you are done, remember to exit the session!

Submit Batch Jobs @ zcluster

- Components you need to submit a batch job:
 - Software already installed on zcluster
 - Job submission script to run the software,
 - ✓ Specifying working directory
 - Exporting environment variables, e.g.,
 OMP_NUM_THREADS (OpenMP threads number)
 LD_LIBRARY_PATH (searching paths for shared libraries)
- Common commands you need:
 - qsub with specifying queue name, threads or MPI rank number
 - qstat, qdel
 - qacct, qsj, etc.

Batch Serial Job @ zcluster

Step 1: Create a job submission script fastqc_*sub.sh* running Fastqc tool:

#!/bin/bash

→ Linux shell (bash)

cd working_directory export PATH=/usr/local/fastqc/latest:\${PATH} time fastqc SRR1369670.fastq -o Output_File

- \rightarrow Specify and enter (cd) the working directory
- \rightarrow Export command helps to set the Environment variables
- → Run Fastqc with 'time' command to measure amount of time it takes to run the application

Step 2: Submit it to the queue:

Batch Threaded Job @ zcluster

Step 1: Create a job submission script blast.*sh* running Blast:

Define and export environment variable (MPIRUN)

for convenient usage

Batch MPI Job @ zcluster

Step 1: Create a job submission script *sub.sh* running RAxML:

#!/bin/bash
cd working_directory

export MPIRUN=/usr/local/mpich2/1.4.1p1/gcc 4.5.3/bin/mpirun

\$MPIRUN(-np \$NSLOTS/usr/local/raxml/latest/raxmlHPC-MPI-SSE3 [options] → Run RAxML with 20 MPI processes (-np \$NSLOTS)

Step 2: Submit it to the queue:

Check and Cancel Jobs @ zcluster

* To check the status of all queued and running jobs: qstat

qstat	ightarrow shows your job in the pool
qstat –u "*"	ightarrow shows all the jobs in the pool
qstat –j 12345	→ shows detailed information, e.g., maxymem, about the job with JOBID 12345
qstat –g t	→ list all nodes used by your jobs

To cancel a queued or running job: **qdel** **

qdel –u pakala	deleted all your jobs
qdel 12345	deletes your job with JOBID 12345

qsj 12345

To list detailed information about a job: qsj, qacct •

job with JOBID 12345 \rightarrow shows information, e.g., , about the \rightarrow shows information, e.g., job with JOBID 12345 gacct -- j 12345 , about the

Software Installed @ zcluster

- Perl, Python, Java, awk, sed, C/C++ and Fortran compilers
- Matlab, Maple, R

Many Bioinformatics applications: NCBI Blast+, Velvet, Trinity, TopHat, MrBayes, SoapDeNovo, Samtools, RaxML, etc.

RCCBatchBlast (RCCBatchBlastPlus) to distribute NCBI Blast (NCBI Blast+) searches to multiple nodes.

Many Bioinformatics Databases: NCBI Blast, Pfam, uniprot, etc. <u>https://wiki.gacrc.uga.edu/wiki/Bioinformatics_Databases</u>

For a complete list of applications: <u>https://wiki.gacrc.uga.edu/wiki/Software</u>

THANK YOU for your patience

Questions?